Suppose that A be an abelain ring with identity, B be a unitary (left) A-module, in this paper ,we introduce a type of modules ,namely Quasi-semiprime A-module, whenever is a Prime Ideal For proper submodule N of B,then B is called Quasi-semiprime module ,which is a Generalization of Quasi-Prime A-module,whenever annAN is a prime ideal for proper submodule N of B,then B is Quasi-prime module .A comprchensive study of these modules is given,and we study the Relationship between quasi-semiprime module and quasi-prime .We put the codition coprime over cosemiprime ring for the two cocept quasi-prime module and quasi-semiprime module are equavelant.and the cocept of prime module and quasi-semiprime module are equavelant.The codition of anti-hopfain make Quasi-Prime is Quasi-Semiprime A-module.Whenever B is Cyclic,Coprime C-Module,Where C be ring each ideal is semiprim,imlies Quasi-Prime,Quasi-SimePrime and annCB is Prime ideal are equaivelant.If F be eipemorphism from B1 B2 ,Whenever B1 is Quasi-SemiPrime Module,implies B2 is Quasi-semiprime A-Module and the iverse Image Of Quasi-Semiprime Is Quasi-SemiPrime A-Module.
Some authors studied modules with annihilator of every nonzero submodule is prime, primary or maximal. In this paper, we introduce and study annsemimaximal and coannsemimaximal modules, where an R-module M is called annsemimaximal (resp. coannsemimaximal) if annRN (resp. ) is semimaximal ideal of R for each nonzero submodule N of M.
An -module is called absolutely self neat if whenever is a map from a maximal left ideal of , with kernel in the filter is generated by the set of annihilator left ideals of elements in into , then is extendable to a map from into . The concept is analogous to the absolute self purity, while it properly generalizes quasi injectivity and absolute neatness and retains some of their properties. Certain types of rings are characterized using this concept. For example, a ring is left max-hereditary if and only if the homomorphic image of any absolutely neat -module is absolutely self neat, and is semisimple if and only if all -modules are absolutely self neat.
The main goal of this paper is introducing and studying a new concept, which is named H-essential submodules, and we use it to construct another concept called Homessential modules. Several fundamental properties of these concepts are investigated, and other characterizations for each one of them is given. Moreover, many relationships of Homessential modules with other related concepts are studied such as Quasi-Dedekind, Uniform, Prime and Extending modules.
In this paper the full stable Banach gamma-algebra modules, fully stable Banach gamma-algebra modules relative to ideal are introduced. Some properties and characterizations of these classes of full stability are studied.
The concept of closed quasi principally injective acts over monoids is introduced ,which signifies a generalization for the quasi principally injective as well as for the closed quasi injective acts. Characterization of this concept is intended to show the behavior of a closed quasi principally injective property. At the same time, some properties of closed quasi principally injective acts are examined in terms of their endomorphism monoid. Also, the characterization of a closed self-principally injective monoid is given in terms of its annihilator. The relationship between the following concepts is also studied; closed quasi principally injective acts over monoids, Hopfian, co Hopfian, and directly finite property. Ultimately, based on
... Show MoreLet Ḿ be a unitary R-module and R is a commutative ring with identity. Our aim in this paper to study the concepts T-ABSO fuzzy ideals, T-ABSO fuzzy submodules and T-ABSO quasi primary fuzzy submodules, also we discuss these concepts in the class of multiplication fuzzy modules and relationships between these concepts. Many new basic properties and characterizations on these concepts are given.
In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let and be two -modules such that is singular. Then is -y-closed Rickart module if and only if Also, we study the direct sum of y-closed Rickart modules.
Let R be an associative ring with identity, and let M be a unital left R-module, M is called totally generalized *cofinitely supplemented module for short ( T G*CS), if every submodule of M is a Generalized *cofinitely supplemented ( G*CS ). In this paper we prove among the results under certain condition the factor module of T G*CS is T G*CS and the finite sum of T G*CS is T G*CS.
In this paper, we introduce the concept of generalized strong commutativity (Cocommutativity) preserving right centralizers on a subset of a Γ-ring. And we generalize some results of a classical ring to a gamma ring.
Let be a ring with identity. Recall that a submodule of a left -module is called strongly essential if for any nonzero subset of , there is such that , i.e., . This paper introduces a class of submodules called se-closed, where a submodule of is called se-closed if it has no proper strongly essential extensions inside . We show by an example that the intersection of two se-closed submodules may not be se-closed. We say that a module is have the se-Closed Intersection Property, briefly se-CIP, if the intersection of every two se-closed submodules of is again se-closed in . Several characterizations are introduced and studied for each of these concepts. We prove for submodules and of that a module has the
... Show More