Preferred Language
Articles
/
jih-316
Efficient Semi-Analytic Technique for Solving Nonlinear Singular Initial Value Problems

 The aim of this paper is to present a semi - analytic technique for solving singular initial value problems of ordinary differential equations with a singularity of different kinds to construct polynomial solution using two point  osculatory  interpolation.           The efficiency and accuracy of suggested method is assessed by comparisons with exact and other approximate solutions for a wide classes of non–homogeneous, non–linear singular initial value problems.             A new, efficient estimate of the global error is used for adaptive mesh selection. Also, analyze some of the numerical aspects relevant for the implementation, describe measures to increase the efficiency of the code and compare its performance with the performance of established standard codes for singular initial value problems.           Many examples are presented to demonstrate the applicability and efficiency of the suggested method on one hand and to confirm the convergence order on the other hand.  

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
On Semi-?-Connected Subspace

In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.

Crossref
View Publication Preview PDF
Publication Date
Fri Mar 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semi-Essential Submodules

Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.

View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Semi -T- Small Submodules

Let  be a ring with identity and  be a submodule of a left - module . A submodule  of  is called - small in  denoted by , in case for any submodule  of ,  implies .  Submodule  of  is called semi -T- small in , denoted by , provided for submodule  of ,  implies that . We studied this concept which is a generalization of the small submodules and obtained some related results

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
Semi-T-maximal sumodules

Let  be a commutative ring with identity and  be an -module. In this work, we present the concept of semi--maximal sumodule as a generalization of -maximal submodule.

We present that a submodule  of an -module  is a semi--maximal (sortly --max) submodule if  is a semisimple -module (where  is a submodule of ). We  investegate some properties of these kinds of modules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jul 31 2022
Journal Name
Iraqi Journal Of Science
Almost Semi-extending Modules

      Fuchs introduced purely extending modules as a generalization of extending modules. Ahmed and Abbas gave another generalization for extending modules named semi-extending modules. In this paper, two generalizations of the extending modules are combined to give another generalization. This generalization is said to be almost semi-extending. In fact, the purely extending modules lies between the extending and almost semi-extending modules. We also show that an almost semi-extending module is a proper generalization of purely extending. In addition, various examples and important properties of this class of modules are given and considered. Another characterization of almost semi-extending modules is established. Moreover, the re

... Show More
Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi Semi and Pseudo Semi (p,E)-Convexity in Non-Linear Optimization Programming

The class of quasi semi -convex functions and pseudo semi -convex functions are presented in this paper by combining the class of -convex functions with the class of quasi semi -convex functions and pseudo semi -convex functions, respectively. Various non-trivial examples are introduced to illustrate the new functions and show their relationships with -convex functions recently introduced in the literature. Different general properties and characteristics of this class of functions are established. In addition, some optimality properties of generalized non-linear optimization problems are discussed. In this generalized optimization problems, we used, as the objective function, quasi semi -convex (respectively, strictly quasi semi -convex

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem

In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Apr 26 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Normalization Bernstein Basis For Solving Fractional Fredholm-Integro Differential Equation

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   

Crossref
View Publication Preview PDF
Publication Date
Wed Apr 29 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Alternating Directions Implicit Method for Solving Homogeneous Heat Diffusion Equation

     An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .

Crossref
View Publication Preview PDF
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Variational Iteration Method for Solving Multi-Fractional Integro Differential Equations

In this paper, we present an approximate method for solving integro-differential equations of multi-fractional order by using the variational iteration method.
First, we derive the variational iteration formula related to the considered problem, then prove its convergence to the exact solution. Also we give some illustrative examples of linear and nonlinear equations.

View Publication Preview PDF