Graphene-carbon nitride can be synthesized from thiourea in a single step at a temperature of four hours at a rate of 2.3 ℃/min. Graphene-carbon nitride was characterized by Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), scanning electron microscopy, and spectrophotometry (UV-VIS). Graphene-carbon nitride was found to consist of triazine and heptazine structures, carbon, and nitrogen. The weight percentage of carbon and the atomic percentage of carbon are 40.08%, and the weight percentage of nitrogen and the atomic percentage of nitrogen are 40.08%. Therefore, the ratio and the dimensions of the graphene-carbon nitride were characterized by scanning electron microscopy, and it was found that the radius was within the range of (2 µm-147.1 nm). In addition, it was found that it absorbed light in the visible field (VIS). The objective of the manufacture and characterization of graphene-carbon nitride for use in the manufacture of a selective electrode for an organic pollutant (currently used in the manufacture of a selective electrode for the analysis of organic dye).
Thin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and 10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where the
... Show MoreA hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show Morediasotiation compondnds sulphate upon with melting elemental aryl been used in his mouth for a while of studied
Well dispersed Cu2FeSnSe4 (CFTSe) nanofilms were synthesized by hot-injection method. The structural and morphological measurements were characterized using XRD (X-ray diffraction), Raman spectroscopy, SEM (scanning electron microscopy), and TEM (transmission electron microscopy). Chemical composition and optical properties of as-synthesized CFTSe nanoparticles were characterized using EDS (energy dispersive spectroscopy) and UV-Vis spectrophotometry. The average particle size of the nanoparticles was about 7-10 nm. The UV-Vis absorption spectra showed that the synthesized CFTS nanofilms have a band gap (Eg) of about 1.16 eV. Photo-electrochemical characteristics of CFTSe nanoparticles were studied and in
... Show MoreWell dispersed Cu2FeSnSe4 (CFTSe) nanofilms were synthesized by hot-injection method. The structural and morphological measurements were characterized using XRD (X-ray diffraction), Raman spectroscopy, SEM (scanning electron microscopy), and TEM (transmission electron microscopy). Chemical composition and optical properties of as-synthesized CFTSe nanoparticles were characterized using EDS (energy dispersive spectroscopy) and UV-Vis spectrophotometry. The average particle size of the nanoparticles was about 7-10 nm. The UV-Vis absorption spectra showed that the synthesized CFTS nanofilms have a band gap (Eg) of about 1.16 eV. Photo-electrochemical characteristics of CFTSe nanoparticles were studied and indicated their potential application
... Show More5wt% copper doped zinc oxide (Cu-ZnO) nanostructures were prepared via the hydrothermal technique at different temperatures of 70, 100, 130, 160 and 190oC. UV spectroscopy, FE-SEM microscopy, XRD crystallography, and EDS measurements were used for nanostructure characterization. UV spectroscopy indicated a red shift for the absorption peaks, and hence a blue shift for the energy gap values, as temperature increased from 70 to 190oC. FE-SEM microscopy showed an increase in the average lengths and diameters of the nanostructures following a similar increase in temperature. XRD crystallography indicated decent structural patterns for Cu-ZnO nanostructures with an increase in crystallite size upon temperature incr
... Show MoreThere is currently a pressing need to create an electro-analytical approach capable of detecting and monitoring genosensors in a highly sensitive, specific, and selective way. In this work, Functionalized Multiwall Carbon Nanotubes, Graphene, Polypyrrole, and gold nanoparticles nanocomposite (f-MWCNTs-GR-PPy-AuNP) were effectively deposited on the surface of the ITO electrode using a drop-casting process to modify it. The structural, morphological, and optical analysis of the modified ITO electrodes was carried out at room temperature using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) images, atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectra. Cyclic voltammetry (CV) and electrochemi
... Show MoreIn the current century, nanotechnology has gained great interest due to its ability to modify the size of metals to the nanoscale, which dramatically changes the physical, chemical, and biological characteristics of metals relative to their bulk counterparts. The approaches used to create nanoparticles (NPs) are physical, و chemical and وbiological. The shortcomings in physical and chemical synthesis approaches, such as the generation of toxic by-products, and energy consume as they require high temperature, pressure, power and lethal chemicals, contributed to an increased interest in biological synthesis by plants. Scientists have created a new filed called as "green nanotechnology" by fusing the idea of sustainability with nanotechno
... Show MoreThis study was for searching for Cholera Bacteria serotype which causes epidemiology Cholera in the 2007 in a fast method which contains (Rapid Visual Test) (Crystal V.C.) which was used for the first time in Iraq to diagnosis of Cholera Bacteria & compared with the traditional bacteriology method. The Cholera disease is one of the most dangerous epidemiological diseases which lead to death with a percentage of (50 – 70) % in the severe cases for untreated patients . For this purpose, 100 samples of stool from the patients from a (13) hospitals in Baghdad Governorate in the period from August to the end of December. The Cholera was diagnosis in two methods, 1st method was the fast method using the nitrocellulose which is coated with anti-
... Show Moreتم في هذا البحث استخدام المحفز الجديد المصنع من تحميل دقائق البلاتين النانوية على سطح الصفائح النانوية للكرافين كمحفز ضوئي واختباره لدراسة التجزئة الضوئية لملوثات المياه وازالتها بشكل نهائي من مصادر المياه لما لها من تأثير سلبي على البيئة. حيث تم استخدام صبغة البروموفينول الأزرق كمثال على أحد الملوثات. في البدء تم التأكد من تحضير المحفز بالطريقة المستخدمة في طريقة العمل من خلال تشخيصه باستخدام عدد من ا
... Show More