In previous our research, the concepts of visible submodules and fully visible modules were introduced, and then these two concepts were fuzzified to fuzzy visible submodules and fully fuzzy. The main goal of this paper is to study the relationships between fully fuzzy visible modules and some types of fuzzy modules such as semiprime, prime, quasi, divisible, F-regular, quasi injective, and duo fuzzy modules, where under certain conditions it has been proven that each fully fuzzy visible module is fuzzy duo. In addition, there are many various properties and important results obtained through this research, which have been illustrated. Also, fuzzy Artinian modules and fuzzy fully stable modules have been introduced, and we study the relationships between these kinds of modules and fully fuzzy visible modules. Many other intersecting results we found.
In this paper we introduce a new class of sets called -generalized b- closed (briefly gb closed) sets. We study some of its basic properties. This class of sets is strictly placed between the class of gp- closed sets and the class of gsp- closed sets. Further the notion of b- space is introduced and studied.
2000 Mathematics Subject Classification: 54A05
This study introduces a series of single and pile group model tests subjected to lateral loads in . multilayered sand from Karbala, Iraq. The aim of this study is to investigate: the performance of the pile groups subjected to lateral loads; in which the pile batter inclination angle is changed; the effect of pile spacing (s/d) ratio, the influence of using different number of piles and pile group configuration. Results revealed that the performance of single negative (Reverse) Battered piles with inclination of 10° and 20° show a gain of 32% and 76 % in the ultimate lateral capacity over the regular ones. For pile groups, the use of a combination of regular, negative and positive battered piles in
... Show MoreSufficient conditions for boundary controllability of nonlinear system in quasi-Banach spaces are established. The results are obtained by using the strongly continuous semigroup theory and some techniques of nonlinear functional analysis, such as, fixed point theorem and quasi-Banach contraction principle theorem. Moreover, we given an example which is provided to illustrate the theory.
In this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
The first step in this research is to find some of the necessary estimations in approximation by using certain algebraic polynomials, as well as we use certain specific points in approximation. There are many estimations that help to find the best approximation using algebraic polynomials and geometric polynomials. Throughout this research, we deal with some of these estimations to estimate the best approximation error using algebraic polynomials where the basic estimations in approximation are discussed and proven using algebraic polynomials that are discussed and proven using algebraic polynomials that are specified by the following points and if as well as if .
For the second step of the work, the estimatio
... Show MoreThe focus of this article is to add a new class of rank one of modified Quasi-Newton techniques to solve the problem of unconstrained optimization by updating the inverse Hessian matrix with an update of rank 1, where a diagonal matrix is the first component of the next inverse Hessian approximation, The inverse Hessian matrix is generated by the method proposed which is symmetric and it satisfies the condition of modified quasi-Newton, so the global convergence is retained. In addition, it is positive definite that guarantees the existence of the minimizer at every iteration of the objective function. We use the program MATLAB to solve an algorithm function to introduce the feasibility of
... Show MoreFrustrated Total Internal Reflection FTIR phenomenon is manifested employing Newton‟s rings setup generated via a coherent light beam of a laser diode ( . All concentric bright and dark rings, except the central bright spot, were noticed to recede (disappear) when the incident angle exceeded the critical angle of 41o.
It was also shown that the current setup has proven its applicability for other tests and can give convenient results that conform with theory. Neither the concept nor the design is beyond what can be realized in an undergraduate laboratory. However, technical improvements in mounting the prism - lens may be advisable. As an extension of the experiments, the effect can be studied using hollow prism filled with liquids
In this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.
In this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
In this paper, we study the peristaltic transport of incompressible Bingham plastic fluid in a curved channel. The formulation of the problem is presented through, the regular perturbation technique for small values of is used to find the final expression of stream function. The numerical solution of pressure rise per wave length is obtained through numerical integration because its analytical solution is impossible. Also the trapping phenomenon is analyzed. The effect of the variation of the physical parameters of the problem are discussed and illustrated graphically.