The study of fixed points on the maps fulfilling certain contraction requirements has several applications and has been the focus of numerous research endeavors. On the other hand, as an extension of the idea of the best approximation, the best proximity point (ƁƤƤ) emerges. The best approximation theorem ensures the existence of an approximate solution; the best proximity point theorem is considered for addressing the problem in order to arrive at an optimum approximate solution. This paper introduces a new kind of proximal contraction mapping and establishes the best proximity point theorem for such mapping in fuzzy normed space ( space). In the beginning, the concept of the best proximity point was introduced. The concept of proximal contractive mapping in the context of fuzzy normed space is then presented. Following that, the best proximity point theory for this kind of mapping is established. In addition, we provide an example application of the results
In this thesis, we introduced the simply* compact spaces which are defined over simply* open set, and study relation between the simply* separation axioms and the compactness were studied and study a new types of functions known as αS^(M* )- irresolte , αS^(M* )- continuous and R S^(M* )- continuous, which are defined between two topological spaces. On the other hand we use the class of soft simply open set to define a new types of separation axioms in soft topological spaces and we introduce the concept of soft simply compactness and study it. We explain and discuss some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply c
... Show MoreThe primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
In this paper, we introduce new classes of sets called g *sD -sets , g *sD −α -sets , g *spreD − sets , g *sbD − -sets and g *sD −β -sets . Also, we study some of their properties and relations among them . Moreover, we use these sets to define and study some associative separation axioms .