The study of fixed points on the maps fulfilling certain contraction requirements has several applications and has been the focus of numerous research endeavors. On the other hand, as an extension of the idea of the best approximation, the best proximity point (ƁƤƤ) emerges. The best approximation theorem ensures the existence of an approximate solution; the best proximity point theorem is considered for addressing the problem in order to arrive at an optimum approximate solution. This paper introduces a new kind of proximal contraction mapping and establishes the best proximity point theorem for such mapping in fuzzy normed space ( space). In the beginning, the concept of the best proximity point was introduced. The concept of proximal contractive mapping in the context of fuzzy normed space is then presented. Following that, the best proximity point theory for this kind of mapping is established. In addition, we provide an example application of the results
The purpose of this paper is to shed light on the concept of fuzzy logic ,its application in linguistics ,especially in language teaching and the fuzziness of some lexical items in English.
Fuzziness means that the semantic boundaries of some lexical items are indefinite and ideterminate.Fuzzy logic provides a very precise approach for dealing with this indeterminacy and uncertainty which grows (among other reasons) out of human behavior and the effect of society.
The concept of fuzzy logic has emerged in the development of the theory of fuzzy set by Lotfi Zadeh(a professor of computer science at the university of California) in 1965.It can be thought of as the application side of the fuzzy set theory. In linguistics, few scholars
We have studied some types of ideals in a KU-semigroup by using the concept of a bipolar fuzzy set. Bipolar fuzzy S-ideals and bipolar fuzzy k-ideals are introduced, and some properties are investigated. Also, some relations between a bipolar fuzzy k-ideal and k-ideal are discussed. Moreover, a bipolar fuzzy k-ideal under homomorphism and the product of two bipolar fuzzy k-ideals are studied.
The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show More<p>In this paper, we prove there exists a coupled fixed point for a set- valued contraction mapping defined on X× X , where X is incomplete ordered G-metric. Also, we prove the existence of a unique fixed point for single valued mapping with respect to implicit condition defined on a complete G- metric.</p>
A cap of size and degree in a projective space, (briefly; (k,r)-cap) is a set of points with the property that each line in the space meet it in at most points. The aim of this research is to extend the size and degree of complete caps and incomplete caps, (k, r)-caps of degree r<12 in the finite projective space of dimension three over the finite field of order eleven, which already exist and founded by the action of subgroups of the general linear group over the finite field of order eleven and degree four, to (k+i,r+1) -complete caps. These caps have been classified by giving the t_i-distribution and -distribution. The Gap programming has been used to execute the designed algorit
... Show MoreWe introduce and discuss the modern type of fibrewise topological spaces, namely fibrewise fuzzy topological spaces. Also, we introduce the concepts of fibrewise closed fuzzy topological spaces, fibrewise open fuzzy topological spaces, fibrewise locally sliceable fuzzy topological spaces and fibrewise locally sectionable fuzzy topological spaces. Furthermore, we state and prove several theorems concerning these concepts.
Let R be a commutative ring with identity. A proper ideal I of R is called semimaximal if I is a finite intersection of maximal ideals of R. In this paper we fuzzify this concept to fuzzy ideals of R, where a fuzzy ideal A of R is called semimaximal if A is a finite intersection of fuzzy maximal ideals. Various basic properties are given. Moreover some examples are given to illustrate this concept.
Let R be a commutative ring with unity. In this paper we introduce the notion of chained fuzzy modules as a generalization of chained modules. We investigate several characterizations and properties of this concept
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .
Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.