The study of fixed points on the maps fulfilling certain contraction requirements has several applications and has been the focus of numerous research endeavors. On the other hand, as an extension of the idea of the best approximation, the best proximity point (ƁƤƤ) emerges. The best approximation theorem ensures the existence of an approximate solution; the best proximity point theorem is considered for addressing the problem in order to arrive at an optimum approximate solution. This paper introduces a new kind of proximal contraction mapping and establishes the best proximity point theorem for such mapping in fuzzy normed space ( space). In the beginning, the concept of the best proximity point was introduced. The concept of proximal contractive mapping in the context of fuzzy normed space is then presented. Following that, the best proximity point theory for this kind of mapping is established. In addition, we provide an example application of the results
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreWe propose two simple, rapid, and convenient spectrophotometric methods which are described for the determination of cephalexin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in the first method) and colorimetric determination of the green colored solution at 610 nm formed after the reaction of cephalexin with potassium permanganate as an oxidant agent (in the second method) in basic medium. The working conditions of the methods are investigated and optimized. Beer's law plot shows a good correlation in the concentration range of 5-40?g ml-1. The detection limits are 2.573,2.814 ?g ml-1 for the flame emission photometric method and 1.844,2.016 ?g ml-1 for colo
... Show MoreThis study aims to measure the basic foundations of organizational health in the General Company for Food Products and to indicate the extent of its presence or not within the company under investigation.
This research was completed using a descriptive and analytical approach using a sample of 97 employees from the General Company for Petroleum Products. Calculating the arithmetic mean, standard deviation, coefficient of variation, and confirmatory factor analysis are all part of the data processing process.
Future wireless networks will require advance physical-layer techniques to meet the requirements of Internet of Everything (IoE) applications and massive communication systems. To this end, a massive MIMO (m-MIMO) system is to date considered one of the key technologies for future wireless networks. This is due to the capability of m-MIMO to bring a significant improvement in the spectral efficiency and energy efficiency. However, designing an efficient downlink (DL) training sequence for fast channel state information (CSI) estimation, i.e., with limited coherence time, in a frequency division duplex (FDD) m-MIMO system when users exhibit different correlation patterns, i.e., span distinct channel covariance matrices, is to date ve
... Show MoreStudy of determining the optimal future field development has been done in a sector of South Rumaila oil field/ main pay. The aspects of net present value (economic evaluation) as objective function have been adopted in the present study.
Many different future prediction cases have been studied to determine the optimal production future scenario. The first future scenario was without water injection and the second and third with 7500 surface bbls/day and 15000 surface bbls/day water injection per well, respectively. At the beginning, the runs have been made to 2028 years, the results showed that the optimal future scenario is continuing without water in
Abstract
Objectives: The study is carried out to assess functional performance for heart's valve replacement patients and find out relationship with sociodemographic data and clinical data
Methodology: Descriptive design is carried out at cardiac surgery centers in Baghdad ; Ibn -Al Betar Specialized for cardiac surgery center and Al-Iraqi center for cardiac disease. its initiation from December28the 2013 to September 1st 2014,A non- probability (purposive) sample of 50 adults patients are attended cardiac surgery centers at Baghdad city and who have heart valves replacement. The data collection through development of questionnaire which is composed from three parts(socio demographic data, clinical information, functional performa