Preferred Language
Articles
/
jih-3076
Fractional Pantograph Delay Equations Solving by the Meshless Methods
...Show More Authors

This work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some numerical examples are identified to show the utility and capability of the two proposed approaches. Mathematica®12 program has been relied upon in the calculations.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Existence and Qualitative Property of Differential Equation with Delayed Arguments
...Show More Authors

     In this paper, some conditions to guarantee the existence of bounded solution to the second order multi delayed arguments differential equation are given. The Krasnoselskii theorem used to the Lebesgue’s dominated convergence and fixed point to obtain some new sufficient conditions for existence of solutions. Some important lemmas are established that are useful to prove the main results for oscillatory property. We also submitted some sufficient conditions to ensure the oscillation criteria of bounded solutions to the same equation.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Jan 01 2013
Journal Name
Photonics & Lasers In Medicine
The assessment of pathological changes in cerebral blood flow in hypertensive rats with stress-induced intracranial hemorrhage using Doppler OCT: Particularities of arterial and venous alterations/Die Beurteilung von pathologischen Veränderungen der Hirndurchblutung bei hypertensiven Ratten mit Stress-induzierten intrakraniellen Blutungen mittels Doppler-OCT: Besonderheiten von arteriellen und venösen Veränderungen
...Show More Authors
Abstract<p>Hemorrhagic insult is a major source of morbidity and mortality in both adults and newborn babies in the developed countries. The mechanisms underlying the non-traumatic rupture of cerebral vessels are not fully clear, but there is strong evidence that stress, which is associated with an increase in arterial blood pressure, plays a crucial role in the development of acute intracranial hemorrhage (ICH), and alterations in cerebral blood flow (CBF) may contribute to the pathogenesis of ICH. The problem is that there are no effective diagnostic methods that allow for a prognosis of risk to be made for the development of ICH. Therefore, quantitative assessment of CBF may significantly advance the underst</p> ... Show More
View Publication
Scopus (13)
Crossref (2)
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Results In Physics
Alpha clustering preformation probability in even-even and odd-A<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e3355" altimg="si39.svg"><mml:msup><mml:mrow /><mml:mrow><mml:mn>270</mml:mn><mml:mo>−</mml:mo><mml:mn>317</mml:mn></mml:mrow></mml:msup></mml:math>(116 and 117) using cluster formation model and the mass formulae : KTUY05 and WS4
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE Transformation
...Show More Authors

The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Approximate Solutions of Nonlinear Smoking Habit Model
...Show More Authors

     The work in this paper focuses on solving numerically and analytically a  nonlinear social epidemic model that represents an initial value problem  of ordinary differential equations. A recent moking habit model from Spain is applied and studied here. The accuracy and convergence of the numerical and approximation results are investigated for various methods; for example, Adomian decomposition, variation iteration, Finite difference and Runge-Kutta. The discussion of the present results has been tabulated and graphed. Finally, the comparison between the analytic and numerical solutions from the period 2006-2009 has been obtained by absolute and difference measure error.

View Publication Preview PDF
Scopus (10)
Crossref (3)
Scopus Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Solution of Time-Varying Index-2 Linear Differential Algebraic Control Systems Via A Variational Formulation Technique
...Show More Authors

    This paper deals with finding an approximate solution to the index-2 time-varying linear differential algebraic control system based on the theory of variational formulation. The solution of index-2 time-varying differential algebraic equations (DAEs) is the critical point of the equivalent variational formulation. In addition, the variational problem is transformed from the indirect into direct method by using a generalized Ritz bases approach. The approximate solution is found by solving an explicit linear algebraic equation, which makes the proposed technique reliable and efficient for many physical problems. From the numerical results, it can be implied that very good efficiency, accuracy, and simplicity of the pre

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Mathematical Modelling of Gene Regulatory Networks
...Show More Authors

    This research includes the use of an artificial intelligence algorithm, which is one of the algorithms of biological systems which is the algorithm of genetic regulatory networks (GRNs), which is a dynamic system for a group of variables representing space within time. To construct this biological system, we use (ODEs) and to analyze the stationarity of the model we use Euler's method. And through the factors that affect the process of gene expression in terms of inhibition and activation of the transcription process on DNA, we will use TF transcription factors. The current research aims to use the latest methods of the artificial intelligence algorithm. To apply Gene Regulation Networks (GRNs), we used a progr

... Show More
View Publication Preview PDF
Crossref