Preferred Language
Articles
/
jih-3076
Fractional Pantograph Delay Equations Solving by the Meshless Methods

This work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some numerical examples are identified to show the utility and capability of the two proposed approaches. Mathematica®12 program has been relied upon in the calculations.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Far East Journal Of Mathematical Sciences (fjms)
Crossref
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem

In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum

... Show More
Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations

        In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using  Mathcad 15.and graphic in Matlab R2015a.

Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jun 07 2009
Journal Name
Baghdad Science Journal
Application of delay integral equations in population growth

In this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Deriving the Composite Simpson Rule by Using Bernstein Polynomials for Solving Volterra Integral Equations

In this paper we use Bernstein polynomials for deriving the modified Simpson's 3/8 , and the composite modified Simpson's 3/8 to solve one dimensional linear Volterra integral equations of the second kind , and we find that the solution computed by this procedure is very close to exact solution.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving of the Quadratic Fractional Programming Problems by a Modified Symmetric Fuzzy Approach

The aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algo

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Solving Fractional Damped Burgers' Equation Approximately by Using The Sumudu Transform (ST) Method

       In this work, the fractional damped Burger's equation (FDBE) formula    = 0,

Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Crossref (21)
Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Crossref (21)
Clarivate Crossref
Publication Date
Sun Aug 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Numerical Solutions of Fractional Integral and Fractional Integrodifferential Equations

 In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.

View Publication Preview PDF