In the current century, nanotechnology has gained great interest due to its ability to modify the size of metals to the nanoscale, which dramatically changes the physical, chemical, and biological characteristics of metals relative to their bulk counterparts. The approaches used to create nanoparticles (NPs) are physical, و chemical and وbiological. The shortcomings in physical and chemical synthesis approaches, such as the generation of toxic by-products, and energy consume as they require high temperature, pressure, power and lethal chemicals, contributed to an increased interest in biological synthesis by plants. Scientists have created a new filed called as "green nanotechnology" by fusing the idea of sustainability with nanotechnology. By substituting plant-based materials, it aims to reduce the amount of chemicals used in the manufacture of nanoparticles. Silver nanoparticles (AgNPs) attract the most attention due to their great stability and low chemical reactivity in comparison to other metals. The present review describes the fabrication of nanoparticles (NPs) via chemical and physical methods, as well as the use of plants, bacteria, and fungi. The current review also discusses certain analytical methods used to examine AgNPs, including UV-Vis spectroscopy, FT-IR, SEM, TEM, AFM, XRD, DLS, and zeta potential analysis
Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreThis study examines the removal of ciprofloxacin in an aqueous solution using green tea silver nanoparticles (Ag-NPs). The synthesized Ag-NPs have been classified by the different techniques of SEM, AFM, BET, FTIR, and Zeta potential. Spherical nanoparticles with average sizes of 32 nm and a surface area of 1.2387m2/g are found to be silver nanoparticles. The results showed that the ciprofloxacin removal efficiency depends on the initial pH (2.5-10), CIP (2-15 mg/L), temperature (20-50°C), time (0-180 min), and Ag-NPs dosage (0.1-1g/L). Batch experiments revealed that the removal rate with ratio (1:1) (w/w) were 52%, and 79.8% of the 10 mg/L of CIP at 60, and 180 minutes, respectively with optimal pH=4. Kinetic models for adsorpti
... Show MoreGelatin-grafted N- proflavine acryl amide was synthesized through two steps; firstly the Gelatin was grafted with acrylic acid free radically using Ammonium per-sulfate at 60℃, Then it was modified to its corresponding acyl chloride derivation, second step included the substitution with amino group of proflavine, in this research Gelatin was used as a natural nontoxic, water soluble polymer as a drug carrier. The prepared pro drug polymer was characterized by FTIR and 1H-NMR spectroscopies, Controlled drug release was studied in different pH values at 37℃. Many advantages were obtained comparing with other known methods.
Twelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.
Complexes of Co(II),Ni(II),Cu(II) and Zn(II) with mixed ligands of phenylalanine (L) and tributylphosphine (TBPh) were prepared in aqueous ethanol with (2:1:1) (M:L:TBPh). The prepared complexes were characterized using flame atomic absorption,(C.H.N)Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition biological activity of the phenylalanine and complexes against two selected type of bacteria were also examined. Some of the complexes exhibit good bacterial activities. From the obtained data the octahedral structure was suggested for all prepared complexes.
Abstract New derivatives of 1,2,4- triazole , 1,2,4-triazole -3-one and 1,2,4-triazole-3-thione were obtained through this research. Acid hydrazide derivative was present from reaction of poly acryloyl chloride with hydrazine hydrate in presence of DMF as a solvent then reacted with benzonitrile and its derivatives to give 1,2,4-triazole derivatives. After that reaction of poly acryloyl chloride with semicarbazide and semithiocarbazide to form semicarbazone and semithiocarbazone derivatives respectively. Finally, closing of semicarbazone and semithiocarbazone derivatives with 2% NaOH gave 1,2,4-triazole -3-one and 1,2,4-triazole-4-thione derivatives respectively. These new synthesized products have been characterized by infrared, 1 H-n
... Show MoreThe new C-5 schiff bases derived from D-erythroascorbic acid contaning pyrimidine unit were synthesized by condensation of D-erythroascorbic acid with aromatic amine (containing pyrimidine unit)in dry benzene using glacial acetic acid as a catalyst. D-erythroascorbic acid was synthesized by four steps(Schem 1), while the aromatic amine which is containing oxopyrimidine or thiopyrimidine synthesized by the reaction of chalcone urea or thiourea in acid or basic medium, respectively . The structure of synthesized compounds have been characterized by their melting
... Show MoreNew 2-amino thiazole ,oxodiazole, sulphonilamide and diazin derivatives of N-(α-chloro aceto)-3-(tolyl imino)-5-bromo-2-oxo-indole(2) have been synthesized .The preparation process started by the reaction of 5-bromo isatin with P-toluidine in the presence of glacial acetic acid and dimethylformamide(DMF) as a solvent to give 3-(tolyl imino)5-bromo-1H-indole-2-one.(1), Compound (1) with sodium hydride in dimethylformamide(DMF) at 0C0 gave a suspension of the sodium salt of Schiff base derivative and subsequent reaction with monochloroacetylchloride obtained the intermediate compound(2).Compound(2) was reacted with different reagents in four routes.The first route involved direct reaction with substituted 2-aminobenzothiazole u
... Show MoreTwo series of Schiff Bases [VI]n and thiazolidin-4-one derivatives[VII]n were synthesized by many steps starting from cyclization of 4- hydroxyacetophenon with thiourea in iodine to yield 1,3-thiazole compound which was reacted with pentoxy bromide in anhydrous potassium carbonate to converted compound[II] and this reacted with Phenol to yield azo compound[III]. The azo compound reacted with ethyl chloro acetate in basic medium to get a new easter compound[IV] which is converted to their acid hydrazid[V]. The later compound condensation with n-alkoxy benzaldehyde to give new Schiff bases[VI]n . Imine group undergoes addition cyclization with thioglycolic acid to get thiazolidinone compounds[VII]n .Also, two new series of Schi
... Show More