Reaction of Na2PdCl4 with benz-1,3-imidazole-2-thione or (bzimtH) benz-1,3-thiazoline2-thione (bztztH) in ethanol / NE3 afford complexes of the type [Pd(bzimt)2](1) and [Pd(bztzt)2](2) respectively. Treatment of [Pd(L)2] L= bzimt or bztzt with bidentate ligands (N^N) where N^N= bipyridine (Bipy) , phenanthroline (Phen) , ethylene diamine , or N,N′dimethylethylene diamine afford mononuclear complexes of the type [PdL2(N^N)]. The bzimt and bztzt ligands are coordinated as bidentate chelating ligands through the S and N in (1) and (2) whereas bonded as a monodentate fashion via the sulfur atom in other complexes. The prepared complexes were characterized by elemental CHN analysis, ir and 1H nmr spectra.
N- Benzylidene m-nitrobenzeneamines ( Schiff bases ) were
prepared by condensation of m-nitroaniline with aromatic aldehydes . These Schiff bases were found to react with maleic anhydride to give
2-Aryl-3-( m-nitrophenyl )-2,3- dihydro ( 1,3] oxazepine -4,7-diones and with phthalic anhydride to give 2-Aryl-3-( m- nitrophenyl) -2,3
- dihydrobenz [ 1,2-e ) [ 1,3] oxazepine -4,7- diones whicb were
reacted with pyrrolidine to give the anilide - pyrrolidides of maleic acid and phthalic acid.
New 1,3-oxazol-5(4H)-one(3) was synthesized by cyclization of[(4-Methyl phenyl-carbonyl)amino]acetic acid (2). The starting materials were readily obtained by acylation of 2-amino acetic acid (Glycine) with 4-methyl phenyl chloride .Imidazole(4) was synthesized by reaction of compound (3) with hydrazine hydrate (99%). Compound (4) was isolated and characterized by 1HNMR , FTIR , uv-vis spectroscopy and elemental analysis (C.H.N). Compound (4) has been used as a ligand (L) to prepare a number of metal complexes with Cr(III), Mn(II), Co(II), Ni(II) , Cu(II) and Zn(II).
The prepared complexes were isolated and characterized by FTIR and Uv-vis spectroscopy elemental analysis (C.H.N), flame atomic absorption technique, as well as magnetic
N-Benzylidene m-nitrobenzeneamines (Schiff bases) were prepared by condensation of m-nitroaniline with aromatic aldehydes. These Schiff bases were found to react with maleic anhydride to give 2-Aryl-3-(m-nitrophenyl)-2, 3-dihydro [1, 3] oxazepine–4, 7–diones and with phthalic anhydride to give 2-Aryl-3–(m-nitrophenyl)–2, 3–dihydrobenz|| 1, 2-e|||| 1, 3] oxazepine–4, 7-diones which were reacted with pyrrolidine to give the anilide–pyrrolidides of maleic acid and phthalic acid.
The reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More1,3-0xazepine-4)-diones were prepared by c.ondensation of NÂ
cinnamylideneareneamines with maleic anhydride, phthalic;; anhydride
,and 3-nitrophthalic anhydride. The oxazepjne::; were reacted with
primary aromatic amine to give the corresponding 1 ,3--diazepine-4,7- diones.
New metal complexes of the ligands 2-benzamido benzothiazole(B1), and 2-actamido benzothiazole(B2) with metal ions Ni(II),and Co(II) were prepared in alcoholic medium. The prepared complexes were characterized by FT-IR and electronic spectroscopy, Magnetic susceptibility, Flame Atomic Absorption technique as well as elemental analysis and conductivity measurement. From the spectral studies, an octahedral monomer structure proposed for Ni(II) complexes, and a tetrahedral monomer structure for Co(II)complexes.Semi-empirical methods (PM3,and ZINDO/1)were carried out to evaluate the heat formation( ?H?f)binding energy(?Eb) and dipole moment(µ)for all metal complexes. Also vibration frequencies, Electrostatic potential, HOMO and LUMO
... Show MoreThe synthesis of [1,2-diaminoethane-N,N'-bis(2-butylidine-3- onedioxime)] [II2L] and its cobalt(II), nickel(II), copper(II), palladium(II), platinum(II, IV), zinc(II), cadmium(II) and mercury(II) complexes is reported. The compounds were characterised by elemental analyses, spectroscopic methods [I.R, UV-Vis, ('H NMR. and EI mass for H2L)], molar conductivities, magnetic moments. I.R. spectra show that (H2L) behaves as a neutral or mononegative ligand depending on the nature of the metal ions. The molar conductance of the complexes in (DMSO) is commensurate with their ionic character. On the basis of the above measurements, a square planar geometry is proposed for NOD, Pd(II), and Pt(II) complexes, and an octahedr-al structure with trans
... Show MoreThis research involves the preparation of new ligands 1,1,2,2- tetrakis (sodium acetate thio)ethylene(L1) and 1,1,2- tris(sodiumacetatethio) ethylene(L2), through the reaction of disodium thioglycolate) with tetra chloro ethylene or tri chloro ethylene in (1:4) or (1:3) moler ratio . Homodinucliar complexes of general formlu [M2(L1)] and [M2(L2)ClH2O] , when M= Co(II), Ni(II), Cu (II) and Zn(II) also mono nuclear complexes of general formula [M(L2)] . The prepared complexes were characterized using spectral method (UV/Visible/ IR) , metal content analysis , magnetic and atomic measurements . The spectral and magnetic measurement indicats that some complexes have tetrahedral or square planar complexes environtment .
1-[4-(4-Acetyl-2-hydroxy-phenylazo)-phenyl]-ethanone (L1) and 1-[3-Hydroxy-4(4-nitro-phenylazo)-phenyl]-ethanone (L2) were readied by combination the diazonium salts of amines with 3-hydroxyacetophenone. (C.H.N) analyses, infrared spectra, UV–vis electronic absorption spectra, 1H and 13CNMR spectral mechanisms are use to identified of the ligands. Complexes of Ni+2 and Cu+2 were performed as well depicted. The formation of complexes has been identified by using atomic absorption of flame, elemental analysis, infrared spectra and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied obeyed the mole ratio and continuous contrast methods, Beer's law followed during a concent
... Show More