Preferred Language
Articles
/
jih-3048
Direct Method for Variational Problems Using Boubaker Wavelets

The wavelets have many applications in engineering and the sciences, especially mathematics. Recently, in 2021, the wavelet Boubaker (WB) polynomials were used for the first time to study their properties and applications in detail. They were also utilized for solving the Lane-Emden equation. The aim of this paper is to show the truncated Wavelet Boubaker polynomials for solving variation problems. In this research, the direct method using wavelets Boubaker was presented for solving variational problems. The method reduces the problem into a set of linear algebraic equations. The fundamental idea of this method for solving variation problems is to convert the problem of a function into one that involves a finite number of variables. Different numerical examples were given to demonstrate the applicability and validity of this method using the Matlab program. Also, the results of this technique were compared with the exact solution, and graphs were added to these examples to test the convergence of Wavelet Boubaker polynomials using this method.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Solution of Variavle Delay integral eqiations using Variational approach

The main objective of this research is to use the methods of calculus ???????? solving integral equations Altbataah When McCann slowdown is a function of time as the integral equation used in this research is a kind of Volterra

View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Chaos, Solitons & Fractals
Crossref (16)
Crossref
View Publication
Publication Date
Mon Feb 14 2022
Journal Name
Iraqi Journal Of Science
A New Method for Solving Fully Fuzzy Multi-Objective Linear Programming Problems

In this paper we present a new method for solving fully fuzzy multi-objective linear programming problems and find the fuzzy optimal solution of it. Numerical examples are provided to illustrate the method.

View Publication Preview PDF
Publication Date
Thu Dec 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
solving linear fractional programming problems (LFP) by Using denominator function restriction method and compare it with linear transformations method

 

Abstract

The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.

the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Crossref (2)
Crossref
View Publication
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Newton-Kantorovich Method for Solving One of the Non-Linear Sturm-Liouville Problems

Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Accurate Four-Step Hybrid Block Method for Solving Higher-Order Initial Value Problems

This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Solving Optimal Control Linear Systems by Using New Third kind Chebyshev Wavelets Operational Matrix of Derivative

In this paper, a new third kind Chebyshev wavelets operational matrix of derivative is presented, then the operational matrix of derivative is applied for solving optimal control problems using, third kind Chebyshev wavelets expansions. The proposed method consists of reducing the linear system of optimal control problem into a system of algebraic equations, by expanding the state variables, as a series in terms of third kind Chebyshev wavelets with unknown coefficients. Example to illustrate the effectiveness of the method has been presented.

Crossref
View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Physics Of Fluids
Modeling the effects of slip on dipole–wall collision problems using a lattice Boltzmann equation method

We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,

... Show More
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
View Publication
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Car Logo Image Extraction and Recognition using K-Medoids, Daubechies Wavelets, and DCT Transforms

     Recognizing cars is a highly difficult task due to the wide variety in the appearance of cars from the same car manufacturer. Therefore, the car logo is the most prominent indicator of the car manufacturer. The captured logo image suffers from several problems, such as a complex background, differences in size and shape, the appearance of noise, and lighting circumstances. To solve these problems, this paper presents an effective technique for extracting and recognizing a logo that identifies a car. Our proposed method includes four stages: First, we apply the k-medoids clustering method to extract the logo and remove the background and noise. Secondly, the logo image is converted to grayscale and also converted to a binary imag

... Show More
Scopus Crossref
View Publication Preview PDF