The goal of this study is to provide a new explicit iterative process method approach for solving maximal monotone(M.M )operators in Hilbert spaces utilizing a finite family of different types of mappings as( nonexpansive mappings,resolvent mappings and projection mappings. The findings given in this research strengthen and extend key previous findings in the literature. Then, utilizing various structural conditions in Hilbert space and variational inequality problems, we examine the strong convergence to nearest point projection for these explicit iterative process methods Under the presence of two important conditions for convergence, namely closure and convexity. The findings reported in this research strengthen and extend key previous findings from the literature
The removal of commercial orange G dye from its aqueous solution by adsorption on tobacco leaves (TL) was studied in respect to different factor that affected the adsorption process. These factors including the tobacco leaves does, period of orange G adsorption, pH, and initial orange G dye concentration .Different types of isotherm models were used to describe the orange G dye adsorption onto the tobacco leaves. The experimental results were compared using Langmuir, and frundlich adsorption isotherm, the constants for these two isotherm models was determined. The results fitted frundlich model with value of correlation coefficient equal to (0.981). The capacity of adsorption for the orange G dye was carried out using various kinetic models
... Show MoreParticulate matter (PM) emitted from diesel engine exhaust have been measured in terms of mass, using
99.98 % pure ethanol blended directly, without additives, with conventional diesel fuel (gas – oil),to
get 10 % , 15 %, 20 % ethanol emulsions . The resulting PM collected has been compared with those
from straight diesel. The engine used is a stationary single cylinder, variable compression ratio Ricardo
E6/US. This engine is fully instrumented and could run as a compression or spark ignition.
Observations showed that particulate matter (PM) emissions decrease with increasing oxygenate
content in the fuel, with some increase of fuel consumption, which is due to the lower heating value of
ethanol. The reduction in
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
Objective: The antimicrobial efficacy of three disinfection solutions: 5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX) and Listerine mouthwash were investigated as routine chair-side gutta-percha (GP) disinfection reagents. Design: four groups of gutta percha points were contaminated with E. faecalis bacteria then disinfected by immersion in different solutions (5.25% sodium hypochlorite, 2% chlorhexidine gluconate, Listerine mouth wash and distilled water as control) after 1 and 7 days culturing periods. The antibacterial efficacy of these disinfection solutions was evaluated by using colonies per units (CPU) Methods: Forty GP cones (F3 Dentsply) were sterilized with ethylene oxide gas before immersed contamination within broth m
... Show MoreThis paper presents an analytical study for the magnetohydrodynamic (MHD) flow of a generalized Burgers’ fluid in an annular pipe. Closed from solutions for velocity is obtained by using finite Hankel transform and discrete Laplace transform of the sequential fractional derivatives. Finally, the figures are plotted to show the effects of different parameters on the velocity profile.
The subject of this research involves studying adsorption to removal herbicide Atlantis WG from aqueous solutions by bentonite clay. The equilibrium concentration have been determined spectra photometry by using UV-Vis spectrophotometer. The experimental equilibrium sorption data were analyzed by two widely, Langmuir and Freundlish isotherm models. The Langmuir model gave a better fit than Freundlich model The adsorption amount of (Atlantis WG) increased when the temperature and pH decreased. The thermodynamic parameters like ?G, ?H, and ?S have been calculated from the effect of temperature on adsorption process, is exothermic. The kinetic of adsorption process was studied depending on Lagergren ,Morris ? Weber and Rauschenberg equati
... Show MoreThis paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for