Preferred Language
Articles
/
jih-2972
Estimation of a Parallel Stress-strength Model Based on the Inverse Kumaraswamy Distribution
...Show More Authors

   

 The reliability of the stress-strength model attracted many statisticians for several years owing to its applicability in different and diverse parts such as engineering, quality control, and economics. In this paper, the system reliability estimation in the stress-strength model containing Kth parallel components will be offered by four types of shrinkage methods: constant Shrinkage Estimation Method, Shrinkage Function Estimator, Modified Thompson Type Shrinkage Estimator, Squared Shrinkage Estimator. The Monte Carlo simulation study is compared among proposed estimators using the mean squared error. The result analyses of the shrinkage estimation methods showed that the shrinkage functions estimator was the best since it has a minor mean squared error than the other methods followed by the additional shrinkage estimator. The stress and strength belong to the In


verse Kumaraswamy distribution

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Comparison of Some of Estimation methods of Stress-Strength Model: R = P(Y < X < Z)
...Show More Authors

In this study, the stress-strength model R = P(Y < X < Z)  is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used    to estimate the parameters  namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.  

View Publication Preview PDF
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Baghdad Science Journal
A Comparative Study on the Double Prior for Reliability Kumaraswamy Distribution with Numerical Solution
...Show More Authors

This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Reliability Estimation for the Exponential Distribution Based on Monte Carlo Simulation
...Show More Authors

        This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods

View Publication Preview PDF
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison Among Three Estimation Methods to Estimate Cascade Reliability Model (2+1) Based On Inverted Exponential Distribution
...Show More Authors

      In this paper, we are mainly concerned with estimating cascade reliability model (2+1) based on inverted exponential distribution and comparing among the estimation methods that are used . The maximum likelihood estimator and uniformly minimum variance unbiased estimators are used to get  of the strengths  and the stress ;k=1,2,3 respectively then, by using the unbiased estimators, we propose Preliminary test single stage shrinkage (PTSSS) estimator when a prior knowledge is available for the scale parameter as initial value due past experiences . The Mean Squared Error [MSE] for the proposed estimator is derived to compare among the methods. Numerical results about conduct of the considered

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 11 2023
Journal Name
Mathematical Problems In Engineering
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Estimating the reliability function of Kumaraswamy distribution data
...Show More Authors

The aim of this study is to estimate the parameters and reliability function for kumaraswamy distribution of this two positive parameter  (a,b > 0), which is a continuous probability that has many characterstics with the beta distribution with extra advantages.

The shape of the function for this distribution and the most important characterstics are explained and estimated the two parameter (a,b) and the reliability function for this distribution by using the maximum likelihood method (MLE) and Bayes methods. simulation experiments are conducts to explain the behaviour of the estimation methods for different sizes depending on the mean squared error criterion the results show that the Bayes is bet

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 31 2019
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Different Estimators for the shape Parameter and the Reliability function of Kumaraswamy Distribution
...Show More Authors

In this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution
...Show More Authors

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
On New Weibull Inverse Lomax Distribution with Applications
...Show More Authors

In this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data  sets

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 31 2025
Journal Name
Joiv : International Journal On Informatics Visualization
RC5 Performance Enhancement Based on Parallel Computing
...Show More Authors

This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti

... Show More
View Publication
Scopus Crossref