Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called -preopen in 2002 and 2005, respectively. Definitions of -preinterior and -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called -semi-p-open set. We present the definition of this set with its equivalent. We give definitions of -semi-p-interior and -semi-p-closure of a set and discuss their properties. Also the properties of -preinterior and -preclosuer are discussed. In addition, we give a new type of continuous function in a generalized topological space as -semi-p-continuous function and -semi-p-irresolute function. The relationship between them are showen. We prove that every -open ( -preopen) set is an -semi-p-open set, but not conversely. Every -semi-p-irresolute function is an -semi-p-continuous function, but not conversely. Also we show that the union of any family of -semi-p-open sets is an -semi-p-open set, but the intersection of two -semi-p-open sets need not to be an -semi-p-open set.
A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account the power temporal variation throughout an incident laser pulse, (i.e. pulse shape, or simply: pulse profile).
Three proposed profiles are employed and results are compared with the square pulse approximation of a constant power.