Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called -preopen in 2002 and 2005, respectively. Definitions of -preinterior and -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called -semi-p-open set. We present the definition of this set with its equivalent. We give definitions of -semi-p-interior and -semi-p-closure of a set and discuss their properties. Also the properties of -preinterior and -preclosuer are discussed. In addition, we give a new type of continuous function in a generalized topological space as -semi-p-continuous function and -semi-p-irresolute function. The relationship between them are showen. We prove that every -open ( -preopen) set is an -semi-p-open set, but not conversely. Every -semi-p-irresolute function is an -semi-p-continuous function, but not conversely. Also we show that the union of any family of -semi-p-open sets is an -semi-p-open set, but the intersection of two -semi-p-open sets need not to be an -semi-p-open set.
In this research and by using the concept of , a new set of near set which is nano-Ἷ-semi-g-closed set was defined. Some properties and examples with illustrative table and an applied example were presented.
The main aim of this paper is to use the notion which was introduced in [1], to offered new classes of separation axioms in ideal spaces. So, we offered new type of notions of convergence in ideal spaces via the set. Relations among several types of separation axioms that offered were explained.
In this paper, we procure the notions of neutrosophic simply b-open set, neutrosophic simply b-open cover, and neutrosophic simply b-compactness via neutrosophic topological spaces. Then, we establish some remarks, propositions, and theorems on neutrosophic simply
b-compactness. Further, we furnish some counter examples where the result fails.
We use the idea of the grill. This study generalized a new sort of linked space like -connected and -hyperconnected and investigated its features, as well as the relationship between it and previously described notions. It also developed new sorts of functions, such as hyperconnected space, and identified their relationship by offering numerous instances and attributes that belong to this set. This set will serve as a starting point for further research into the set many future possibilities. We also use some theorems and observations previously studied and related to the grill and the semi-open to obtain results in this research. We applied the concept of connected to them and obtained results related to connected. The sources related t
... Show MoreIn this article an attempt has been made to procure the concept of pairwise neutrosophic simply open set, pairwise neutrosophic simply continuous mapping, pairwise neutrosophic simply open mapping, pairwise neutrosophic simply compactness, pairwise neutrosophic simply b-open set, pairwise neutrosophic simply b-continuous mapping, pairwise neutrosophic simply b-open mapping and pairwise neutrosophic simply b-compactness via neutrosophic bi-topological spaces (in short NBTS). Besides, we furnish few illustrative examples on them via NBTS. Further, we investigate some basic properties of them, and formulate several results on NBTSs.
In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.
In this paper, we introduce and study new types of soft open sets and soft closed
sets in soft bitopological spaces (X,~ ,~ ,E) 1 2 , namely, (1,2)*-maximal soft open
sets, (1,2)*-maximal soft (1,2)*-pre-open sets, semi (1,2)*-maximal soft (1,2)*-preopen
sets, (1,2)*-maximal soft closed sets, (1,2)*-maximal soft (1,2)*-pre-closed
sets, (1,2)*-minimal soft open sets, (1,2)*-minimal soft (1,2)*-pre-open sets, (1,2)*-
minimal soft closed sets, (1,2)*-minimal soft (1,2)*-pre-closed sets, and semi (1,2)*-
minimal soft (1,2)*-pre-closed sets. Also, properties and the relation among these
concepts have been studied.
The purpose of this paper is to introduce dual notions of two known concepts which are semi-essential submodules and semi-uniform modules. We call these concepts; cosemi-essential submodules and cosemi-uniform modules respectively. Also, we verify that these concepts form generalizations of two well-known classes; coessential submodules and couniform modules respectively. Some conditions are considered to obtain the equivalence between cosemi-uniform and couniform. Furthermore, the relationships of cosemi-uniform module with other related concepts are studied, and some conditional characterizations of cosemi-uniform modules are investigated.
In this paper, a new class of sets, namely ï¡- semi-regular closed sets is introduced and studied for topological spaces. This class properly contains the class of semi-ï¡-closed sets and is property contained in the class of pre-semi-closed sets. Also, we introduce and study ï¡srcontinuity and ï¡sr-irresoleteness. We showed that ï¡sr-continuity falls strictly in between semi-ï¡- continuity and pre-semi-continuity.