Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called -preopen in 2002 and 2005, respectively. Definitions of -preinterior and -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called -semi-p-open set. We present the definition of this set with its equivalent. We give definitions of -semi-p-interior and -semi-p-closure of a set and discuss their properties. Also the properties of -preinterior and -preclosuer are discussed. In addition, we give a new type of continuous function in a generalized topological space as -semi-p-continuous function and -semi-p-irresolute function. The relationship between them are showen. We prove that every -open ( -preopen) set is an -semi-p-open set, but not conversely. Every -semi-p-irresolute function is an -semi-p-continuous function, but not conversely. Also we show that the union of any family of -semi-p-open sets is an -semi-p-open set, but the intersection of two -semi-p-open sets need not to be an -semi-p-open set.
The ground state charge, neutron and matter densities for two-neutron halo nuclei P
12
PBe
and P
14
PBe are calculated within a two- frequency shell model approach. In the description of
the halo nuclei it is important to take into account a model space for P
10
PBe and P
12
PBe different
from the two halo neutrons which have to be treated separately in order to explain their
properties. The structures of the halo P
12
PBe and P
14
PBe nuclei show that the dominant
configurations when the two halo neutrons distributed over the 1d shell orbits. Elastic
Coulomb scattering form factors of these two exotic nuclei are also studied through the
combination of the density distributions of
This paper propose the semi - analytic technique using two point osculatory interpolation to construct polynomial solution for solving some well-known classes of Lane-Emden type equations which are linear ordinary differential equations, and disusse the behavior of the solution in the neighborhood of the singular points along with its numerical approximation. Many examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.
The aim of this paper is to present a method for solving of system of first order initial value problems of ordinary differential equation by a semi-analytic technique with constructing polynomial solutions for decreasing dangers of lead. The original problem is concerned using two-point osculatory interpolation with the fit equals numbers of derivatives at the end points of an interval [0 , 1].
This paper is concerned with introducing and studying the new approximation operators based on a finite family of d. g. 'swhich are the core concept in this paper. In addition, we study generalization of some Pawlak's concepts and we offer generalize the definition of accuracy measure of approximations by using a finite family of d. g. 's.
Companies compete greatly with each other today, so they need to focus on innovation to develop their products and make them competitive. Lean product development is the ideal way to develop product, foster innovation, maximize value, and reduce time. Set-Based Concurrent Engineering (SBCE) is an approved lean product improvement mechanism that builds on the creation of a number of alternative designs at the subsystem level. These designs are simultaneously improved and tested, and the weaker choices are removed gradually until the optimum solution is reached finally. SBCE implementations have been extensively performed in the automotive industry and there are a few case studies in the aerospace industry. This research describe the use o
... Show More