The essential objective of this paper is to introduce new notions of fibrewise topological spaces on D that are named to be upper perfect topological spaces, lower perfect topological spaces, multi-perfect topological spaces, fibrewise upper perfect topological spaces, and fibrewise lower perfect topological spaces. fibrewise multi-perfect topological spaces, filter base, contact point, rigid, multi-rigid, multi-rigid, fibrewise upper weakly closed, fibrewise lower weakly closed, fibrewise multi-weakly closed, set, almost upper perfect, almost lower perfect, almost multi-perfect, fibrewise almost upper perfect, fibrewise almost lower perfect, fibrewise almost multi-perfect, upper* continuous fibrewise upper∗ topological spaces respectively, lower* continuous fibrewise lower∗ topological spaces respectively, multi*-continuous fibrewise multi∗-topological spaces respectively multi-Te, locally In addition, we find and prove several propositions linked to these notions.
In this research, the problem of multi- objective modal transport was formulated with mixed constraints to find the optimal solution. The foggy approach of the Multi-objective Transfer Model (MOTP) was applied. There are three objectives to reduce costs to the minimum cost of transportation, administrative cost and cost of the goods. The linear membership function, the Exponential membership function, and the Hyperbolic membership function. Where the proposed model was used in the General Company for the manufacture of grain to reduce the cost of transport to the minimum and to find the best plan to transfer the product according to the restrictions imposed on the model.
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreOver the past few decades, the health benefits are under threat as many commonly used antibiotics have become less and less effective against certain illnesses not only because many of them produce toxic reactions but also due to the emergence of drug-resistant bacteria. The clinical use of a combination of antibiotic therapy for Pseudomonas aeruginosa infections is probably more effective than monotherapy. The present study aims to estimate the antibacterial and antibiofilm activity of Conocarpus erectus leaves extracts against multi-drug resistant P. aeruginosa isolated from different hospitals in Baghdad city. One hundred fifty different clinical specimens were collected from patients from September 2021 to January 2022. All samples were
... Show MoreGray-Scale Image Brightness/Contrast Enhancement with Multi-Model
Histogram linear Contrast Stretching (MMHLCS) method
The multi-focus image fusion method can fuse more than one focused image to generate a single image with more accurate description. The purpose of image fusion is to generate one image by combining information from many source images of the same scene. In this paper, a multi-focus image fusion method is proposed with a hybrid pixel level obtained in the spatial and transform domains. The proposed method is implemented on multi-focus source images in YCbCr color space. As the first step two-level stationary wavelet transform was applied on the Y channel of two source images. The fused Y channel is implemented by using many fusion rule techniques. The Cb and Cr channels of the source images are fused using principal component analysis (PCA).
... Show More