Preferred Language
Articles
/
jih-2883
Exponentially Fitted Diagonally Implicit EDITRK Method for Solving ODEs
...Show More Authors

This paper derives the EDITRK4 technique, which is an exponentially fitted diagonally implicit RK method for solving ODEs . This approach is intended to integrate exactly initial value problems (IVPs), their solutions consist of linear combinations of the group functions  and  for exponentially fitting  problems, with  being the problem’s major frequency utilized to improve the precision of the method. The modified  method EDITRK4 is a new three-stage fourth-order exponentially-fitted diagonally implicit approach for solving IVPs with functions that are exponential as solutions. Different forms of -order ODEs must be derived using the modified system, and when the same issue is reduced to a  framework of equations that can be solved using conventional RK approaches, numerical comparisons must be done. The findings show that the novel approach is more efficacious than previously published methods.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Efficient Method for Color Iris Localization
...Show More Authors

Iris detection is considered as challenging image processing task. In this study efficient method was suggested to detect iris and recognition it. This method depending on seed filling algorithm and circular area detection, where the color image converted to gray image, and then the gray image is converted to binary image. The seed filling is applied of the binary image and the position of detected object binary region (ROI) is localized in term of it is center coordinates are radii (i.e., the inner and out radius). To find the localization efficiency of suggested method has been used the coefficient of variation (CV) for radius iris for evaluation. The test results indicated that is suggested method is good for the iris detection.

View Publication Preview PDF
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Solving Linear and Nonlinear Fractional Differential Equations Using Bees Algorithm
...Show More Authors

A numerical algorithm for solving linear and non-linear fractional differential equations is proposed based on the Bees algorithm and Chebyshev polynomials. The proposed algorithm was applied to a set of numerical examples. Faster results are obtained compared to the wavelet methods.

View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
The operational matrix of Legendre polynomials for solving nonlinear thin film flow problems
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Alexandria Engineering Journal
The operational matrix of Legendre polynomials for solving nonlinear thin film flow problems
...Show More Authors

Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Exact and Local Search Methods for Solving Travelling Salesman Problem with Practical Application
...Show More Authors

This paper investigates some exact and local search methods to solve the traveling salesman problem. The Branch and Bound technique (BABT) is proposed, as an exact method, with two models. In addition, the classical Genetic Algorithm (GA) and Simulated Annealing (SA) are discussed and applied as local search methods. To improve the performance of GA we propose two kinds of improvements for GA; the first is called improved GA (IGA) and the second is Hybrid GA (HGA).

The IGA gives best results than GA and SA, while the HGA is the best local search method for all within a reasonable time for 5 ≤ n ≤ 2000, where n is the number of visited cities. An effective method of reducing the size of the TSP matrix was proposed with

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
Using Multi-Objective Bat Algorithm for Solving Multi-Objective Non-linear Programming Problem
...Show More Authors

Human beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems.  Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.   

Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) h

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (7)
Scopus Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Mean Latin Hypercube Runge-Kutta Method to Solve the Influenza Model
...Show More Authors

     In this study, we propose a suitable solution for a non-linear system of ordinary differential equations (ODE) of the first order with the initial value problems (IVP) that contains multi variables and multi-parameters with missing real data. To solve the mentioned system, a new modified numerical simulation method is created for the first time which is called Mean Latin Hypercube Runge-Kutta (MLHRK). This method can be obtained by combining the Runge-Kutta (RK) method with the statistical simulation procedure which is the Latin Hypercube Sampling (LHS) method. The present work is applied to the influenza epidemic model in Australia in 1919  for a previous study. The comparison between the numerical and numerical simulation res

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Iraqi Journal Of Science
Computational methods for solving nonlinear ordinary differential equations arising in engineering and applied sciences
...Show More Authors

In this paper, the computational method (CM) based on the standard polynomials has been implemented to solve some nonlinear differential equations arising in engineering and applied sciences. Moreover, novel computational methods have been developed in this study by orthogonal base functions, namely Hermite, Legendre, and Bernstein polynomials. The nonlinear problem is successfully converted into a nonlinear algebraic system of equations, which are then solved by Mathematica®12. The developed computational methods (D-CMs) have been applied to solve three applications involving well-known nonlinear problems: the Darcy-Brinkman-Forchheimer equation, the Blasius equation, and the Falkner-Skan equation, and a comparison between t

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed May 13 2020
Journal Name
Nonlinear Engineering
Two meshless methods for solving nonlinear ordinary differential equations in engineering and applied sciences
...Show More Authors
Abstract<p>In this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using <italic>Mathematica</italic>® 10. Four applications, which are the well-known nonlinear problems: the magnetohydrodynamic squeezing fluid, the Jeffery-Hamel flow, the straight fin problem and the Falkner-Skan equation are presented and solved using the proposed methods. To ill</p> ... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Applied And Computational Mathematics
Reliable computational methods for solving Jeffery-Hamel flow problem based on polynomial function spaces
...Show More Authors

In this paper reliable computational methods (RCMs) based on the monomial stan-dard polynomials have been executed to solve the problem of Jeffery-Hamel flow (JHF). In addition, convenient base functions, namely Bernoulli, Euler and Laguerre polynomials, have been used to enhance the reliability of the computational methods. Using such functions turns the problem into a set of solvable nonlinear algebraic system that MathematicaⓇ12 can solve. The JHF problem has been solved with the help of Improved Reliable Computational Methods (I-RCMs), and a review of the methods has been given. Also, published facts are used to make comparisons. As further evidence of the accuracy and dependability of the proposed methods, the maximum error remainder

... Show More
View Publication
Scopus Clarivate Crossref