In this work, we calculate and analyze the photon emission from quark and anti-quark interaction during annihilation process using simple model depending on phenomenology of quantum chromodynamic theory (QCD). The parameters, which include the running strength coupling, temperature of the system and the critical temperature, carry information regarding photon emission and have a significant impact on the photons yield. The emission of photon from strange interaction with anti-strange is large sensitive to decreases or increases there running strength coupling. The photons emission increases with decreases running strength coupling and vice versa. We introduce the influence of critical temperature on the photon emission rate in order to facilitate its further applied in photon emission spectrum. Photon emission was increased with large critical temperature MeV comparing with photons emission at critical temperature MeV. We analyze and discuss the sensitive of the emission of photon to photons energy . It increases with decreased photons energy and vice versa. However, the photons emission increases with increases thermal energy of system T = 170 MeV to 270 Mev. It is implied that strength coupling, critical temperature and photons energy can be as important as thermal energy of system for emission of photon.
Density Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.
Biomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show MoreThis study aims to analyze spectra in real-time for λ Draconids, σ Hydrids, μ Virginid, and one sporadic meteor using spectroscopic chemical analysis and diagnose plasma parameters. Good-resolution spectroscopy and a CCD camera for meteor observation were used concurrently to examine the ablation spectra of these meteorites in situ. The Boltzmann and Lorentz methods were then used to determine the temperature and density of electrons, the length of Debye, and the frequency of plasma. Furthermore, spectra data can be analyzed and compared to data from other sources. Spectrum tests can be utilized to identify the chemical structure of meteorites' plasma.
In this study, light elements Li ,10B for (a,n) and (n,a) reactions
as well as o-particle energy from threshold energy to 10 MeV are
used according to the available data of reaction cross sections. The
more recent cross sections data of (a,n) and (n,a) reactions are
reproduced in fine steps 42 Kev for 10B(n,o) Li in the specified
energy range, as well as cross section (o,n) Values were derived from
the published data of (n,a) as a function of a-energy in the same fine
energy steps by using the principle inverse reactions. This calculation
involves only the ground state of Li OB in the reactions 'Li(a,n) B
B (n,a) Li
Introduction
When two charged nuclei overcome their Coulomb repulsion, a
rearrangement
In this study, the thermal buckling behavior of composite laminate plates cross-ply and angle-ply all edged simply supported subjected to a uniform temperature field is investigated, using a simple trigonometric shear deformation theory. Four unknown variables are involved in the theory, and satisfied the zero traction boundary condition on the surface without using shear correction factors, Hamilton's principle is used to derive equations of motion depending on a Simple Four Variable Plate Theory for cross-ply and angle-ply, and then solved through Navier's double trigonometric sequence, to obtain critical buckling temperature for laminated composite plates. Effect of changing some design parameters such as, ortho
... Show MoreThis study has applied the theoretical framework of conceptual metaphor theory to the analysis of the source and target domains of metaphors that are used in two English nineteenth century sonnets, both written by contemporaneous female poets. The quantitative and qualitative results of the textual analysis have clearly revealed that Elizabeth Barrett Browning’s sonnet 23 centres around the conceptual mapping of the journey of love and life with that of possession. In contrast, Christina Rossetti’s sonnet Remember tackles the central conceptual mapping of death as a journey in relation to its further experiential connections. In addition, the application of conceptual metaphor theory in identifying the frequencies and densities of metap
... Show MoreIn the present work, a program for calculating the coefficients of the Aplanatic Cassegrain Telescope (ACT) system, free from the effects of spherical and coma aberrations, were constructed. In addition, the two-mirrors of the optical system, as aspherical surfaces, were adopted. This means, that the two-equations of the mirrors are assumed to be polynomial function of five even terms only. The numerical method, least-squares curve fitting method to calculate the two-mirror coefficients system, was adopted. For choosing the values and ratios that give the best results, Rayleigh Criterion (Rayleigh Limit), for purpose of comparison and preference, was adopted.
Gas Lasers are important tools that are used in variety purposes, for their low and (cw) output power. The aim of this study was to prepare a way to calculate an optimum stimulated emission cross-section in a gas laser containing a mixture of Xenon and Neon by (30%-70%). The process was a theoretical study of each gas in separate in terms of their physical properties as an active medium. The results of these calculations are logic and more convenient than other mixtures used before
A study of the emission spectra of isotopic for electronic states has been carried out. The energies of the vibration levels ( =0,1,..25) and the values of spectral lines R(J) and P(J) versus rotational quantum number (J=0,1..25). It was found that were an increase of the value of R(J) with the increase of the values of J was found while the value of P(J) decreases with decreasing of the values of J . It was found that corresponding to R(J) and P(J) the spectral line R(J) increases when the values of m increased.
This article conclude a theoretical study for the possibility to produce additional electric power from Iraqi steam power plants by cutting – off high-pressure feed water heaters . Three separated steam power plants which Dura , south –Baghdad and Nasria were studied . The investigation showed the possibity of increasing the electric power from 10 to 15% for Dura and Nasria , whereas 6% for south – Baghdad . According to the nowadays of operation to Iraqi steam power plants , the results showed that by cutting–off high pressure feed water heaters we can generate additional electric power about 250 MW during 3-4 hrs. daily. In addition, the fuel consumption can be reduced in comparison with diesel generat
... Show More