Pumpkin waste powder was used as a coloring and strengthening filler in epoxy to prepare a natural gelcoat . The Pumpkin powder was mixed with different weight ratios (1, 2, 3, 4, 5, 6, 7, and 8%) to the epoxy matrix to select the best value of powder addition. The effect of the pumpkin particle size on the mechanical properties (impact, flexural, hardness, and wear loss) using two different sizes (2.5 and 1.25 microns) was studied. The impact strength increased from (10.09 KJ/ m2) for neat epoxy to (14.79 KJ/ m2) for epoxy with 1% of micron pumpkin fibers ( MPF) with particle size 2.5 micrometer and (14.21 KJ/ m2) for epoxy with 4% (1.25 MPF), flexural strength increased from (41.94 MPa) for neat epoxy to (~ 46 MPa) for epoxy with 1% of 2.5 MPF and to (50.17 MPa) for epoxy with 4% of 1.25 MPF, hardness of neat epoxy was (~ 77) and almost maintained its value for epoxy with 1% of 2.5 MPF and for epoxy with 4% of 1.25 MPF. At almost the weight fractions addition of pumpkin fibers to epoxy, the (EP/1.25MPF) composite shows a higher wear resistance than the (EP/2.5MPF) composite. The density, thermal conductivity, and water diffusion (for 1-4 weeks' immersion) of (EP/2.5MPF) and (EP/1.25MPF) composites were carried out at different weight percentages of pumpkin fibers. SEM and EDS techniques were employed to fix the microstructure and the elemental composition of (EP/2.5MPF) and (EP/1.25MPF) composites, respectively. The internal structure of the composites has been linked with their macroscopic characteristics, such as the color degree of natural gelcoats and their mechanical and thermal properties.
In this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.
In this research study Hardness (shore D), Water absorption,
Flexural, Impact Test, and Fracture Toughness of polymer nano
composites. The polymer nano composites based on unsaturated
polyester resin reinforced with Kevlar fibers (K.F). The samples are
attended by hand lay – up method according to (Rule mixture) for
various volume fractions of unsaturated polyester resin, fiber and
carbon nanotube. The polyester resin was matrix strengthened with
3% volume fraction from Kevlar fiber and (0.5%, 1%, 1.5%, 2%)
volume fractions of carbon nanotube. The water absorption, hardness
(shore D), flexural test, impact test and toughness fracture properties
were studied. Results showed that the water absorption increas
In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other. The resul
... Show MoreIn this work, CdO:In/Si heterojunction solar cell has been made by vacuum evaporation of cadmium oxide doped with 1% of indium thin film onto glass and silicon substrates with rate deposition (3.9A/sec) and thickness(≈250nm). XRD was investigated, the transmission was determined in range (300-1100)nm and the direct band gap energy is 2.43 eV, I-V characterization of the cell under illumination was investigated , the cell shows an open circuit voltage (Voc) of 0.6 Volt, a short circuit current density (Jsc) of 12.8 mA/cm2, a fill factor (F.F) of 0.66, and a conversion efficiency (η) of 5.2%.
Abstract
In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F) as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust) as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash) with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA) has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60
... Show MoreThe aim of this paper, study the effect of carbon nanotubes on the electrical properties of polyvinylchloride. Samples of polyvinylchloride carbon nanotubes composite prepared by using hot press technique. The weight percentages of carbon nanotubes are 0,5,10 and 20wt.%. Results showed that the D.C electrical conductivity increases with increasing of the weight percentages of carbon nanotubes. Also, the D.C electrical conductivity changed with increase temperature for different concentrations of carbon nanotubes. The activation energy of D.C electrical conductivity is decreased with increasing of carbon nanotubes concentration.
In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl
This study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.
After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o
... Show More