A non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple technique. Illustrative examples use MathCad software to deal with upper and lower-bound solutions to fuzzy problems. The method provides a reliable way to ensure that an exact solution is approximated. Also, figures and tables show the potential of the method.
In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
Abstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly
Analysis the economic and financial phenomena and other requires to build the appropriate model, which represents the causal relations between factors. The operation building of the model depends on Imaging conditions and factors surrounding an in mathematical formula and the Researchers target to build that formula appropriately. Classical linear regression models are an important statistical tool, but used in a limited way, where is assumed that the relationship between the variables illustrations and response variables identifiable. To expand the representation of relationships between variables that represent the phenomenon under discussion we used Varying Coefficient Models
... Show MoreIn this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.
In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson†and the “Expectation-Maximization†techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function i
... Show MoreIn this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.
This paper devoted to the analysis of regular singular initial value problems for ordinary differential equations with a singularity of the first kind , we propose semi - analytic technique using two point osculatory interpolation to construct polynomial solution, and discussion behavior of the solution in the neighborhood of the regular singular points and its numerical approximation, two examples are presented to demonstrate the applicability and efficiency of the methods. Finally , we discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems.