The fabricated Photodetector n-CdO /-Si factory thin films Altboukaraharara spatial silicon multi- crystallization of the type (n-Type) the deposition of a thin film of cadmium and at room temperature (300K) and thickness (300 ± 20nm) and the time of deposition (1.25sec) was antioxidant thin films cadmium (Cd) record temperature (673k) for one hour to the presence of air and calculated energy gap optical transitions electronic direct ( allowed ) a function of the absorption coefficient and permeability and reflectivity by recording the spectrum absorbance and permeability of the membrane record within the wavelengths (300 1100nm). was used several the bias ranged between 1-5 Volts. The results showed that this reagent works to the extent spectral 400-1000 nm current revealed these findings also said that factor ideal growing thin films CdO which gives a clear indication of the increased concentration of defects.It Showed the results of measuring volume - an effort that the detector of the type of acute if the value of effort internal construction less CdO of thin films . The studies of the response spectrum showed that these reagents responsiveness characterized Bakmtin : the first at the wavelength of 600 nm and the second at the wavelength 800 nm. The highest value for the responsiveness 0.46 A / W at 800 nm wavelength and using siding
In this research we prepared CdS thin films by Spray pyrolysis method on a glass substrates and we study its structural , optical , electrical properties .The result of (X-Ray ) diffraction showed that all thin films have a polycrystalline structure , The relation of the transmission as a function of wavelength for the CdS films had been studied , The investigated of direct energy gap of the CdS its value is (2.83 eV). In Hall effect measurement of the CdS we find the charge carriers is p – type and Hall coefficient 1157.33(cm3/c) ,Hall mobility 6.77(cm2/v.s)
The structural properties of ternary chalcopyrite AgAlSe2 compound alloys and thin films that prepared by the thermal evaporation method at room temperature on glass substrate with a deposition rate (5±0.1) nm s-1 for different values of thickness (250,500 and 750±20) nm, have been studied, using X-ray diffraction technology. As well as, the optical properties of the prepared films have been investigated. The structural investigated shows that the alloy has polycrystalline structure of tetragonal type with preferential orientation (112), while the films have amorphous structure. Optical measurement shows that AgAlSe2 films have high absorption in the range of wavelength (350-700 nm). The optical energy gap for allowed direct transition we
... Show MoreThe structural properties of ternary chalcopyrite AgAlSe2 compound alloys and thin films that prepared by the thermal evaporation method at room temperature on glass substrate with a deposition rate (5±0.1) nm s-1 for different values of thickness (250,500 and 750±20) nm, have been studied, using X-ray diffraction technology. As well as, the optical properties of the prepared films have been investigated. The structural investigated shows that the alloy has polycrystalline structure of tetragonal type with preferential orientation (112), while the films have amorphous structure. Optical measurement shows that AgAlSe2 films have high absorption in the range of wavelength (350-700 nm). The optical energy gap for allowed direct
... Show MoreIn this research, the study effect of irradiation on structural and optical properties of thin film (CdO) by spray pyrolysis method, which deposited on glasses substrates at a thickness of (350±20)nm , The flow rate of solution was 5 ml/min and the substrate temperature was held constant at 400˚C.The investigation of (XRD) indicates that the (CdO) films are polycrystalline and type of cubic. The results of the measuring of each sample from grain size, micro strain, dislocation density and number of crystals the grain size decreasing after irradiation with gamma ray from(27.41, 26.29 ,23.63)nm . The absorbance and transmittance spectra have been recorded in the wavelength range (300-1100) nm in order to study the optical properties. the op
... Show MoreThin films of tin sulfide (SnS) were prepared by thermal evaporation technique on glass substrates, with thickness in the range of 100, 200 and 300nm and their physical properties were studied with appropriate techniques. The phase of the synthesized thin films was confirmed by X-ray diffraction analysis. Further, the crystallite size was calculated by Scherer formula and found to increase from 58 to 79 nm with increase of thickness. The obtained results were discussed in view of testing the suitability of SnS film as an absorber for the fabrication of low-cost and non toxic solar cell. For thickness, t=300nm, the films showed orthorhombic OR phase with a strong (111) preferred orientation. The films deposited with thickness < 200nm deviate
... Show MoreThe goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreIn this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
Zinc oxide (ZnO) transparent thin films with different oxygen flow rates (0.5, 1.0, and 1.5)Litter/min. were prepared by thermal evaporation technique on glass substrate at a temperature of 200℃ with rate (10±2)nm sec-1, The crystallinity and structure of these films were analyzed by X-ray diffraction (XRD). It exhibits a polycrystalline hexagonal wurtzite structure and the preferred orientation along (002) plane. The Optical properties of ZnO were determined through the optical transmission method using ulta violet–Visible spectrophotometer with in wave length (300-1100)nm. The optical transmittance of the ZnO films increases from 75% to 85% with increase flow rate of O2, and the optical band gap of ZnO
... Show MoreTin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.
... Show More