The aims of the paper are to present a modified symmetric fuzzy approach to find the best workable compromise solution for quadratic fractional programming problems (QFPP) with fuzzy crisp in both the objective functions and the constraints. We introduced a modified symmetric fuzzy by proposing a procedure, that starts first by converting the quadratic fractional programming problems that exist in the objective functions to crisp numbers and then converts the linear function that exists in the constraints to crisp numbers. After that, we applied the fuzzy approach to determine the optimal solution for our quadratic fractional programming problem which is supported theoretically and practically. The computer application for the algorithm was tested, and finally compared modified symmetric fuzzy approach with the modified simplex approach which is shown in the table 1. Finally, the procedures of numeric results in the paper indicate that modified symmetric fuzzy approach is reliable and saves valuable time.
In this paper two ranking functions are employed to treat the fuzzy multiple objective (FMO) programming model, then using two kinds of membership function, the first one is trapezoidal fuzzy (TF) ordinary membership function, the second one is trapezoidal fuzzy weighted membership function. When the objective function is fuzzy, then should transform and shrinkage the fuzzy model to traditional model, finally solving these models to know which one is better
Futsal and blind football are group games of a competitive nature due to their excitement, excitement, fun, and aesthetic goals with charming artistic touches. This explains the public's passion for these two games, whether healthy people or blind people play them, to expand their vision and knowledge. About these two games, a historical approach is presented about their origins, development, and how they became globally recognized competitive sports with unified rules and world championships at various levels. Studying the origin and global spread of both futsal and blind football and identifying the most prominent developments in the rules and tools for futsal and blind football. The most important findings were that both futsal and footb
... Show MoreIn this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show MoreLet M is a Г-ring. In this paper the concept of orthogonal symmetric higher bi-derivations on semiprime Г-ring is presented and studied and the relations of two symmetric higher bi-derivations on Г-ring are introduced.
This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied
In this work, a modified water displacement method (MWDM) was designed and used alongside geometry method (GEM), overflow method (OFM) and water displacement method (WDM) for determination of bulk volume of a porous solid. Their results were analyzed graphically and statistically. On testing against the data obtained by Suspension/Buoyancy Method (SBM) used as gold standard, it was found that only those generated by the modified water displacement method (MWDM) were of very high accuracy and precision. Apart from its reproducibility being within the recommended range for acceptability of a test method, the technique is cost-effective and easy to apply even with an ungraduated glass cylindrical tube. This can go a long way in enhancing th
... Show MoreThis paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreThe aim of this paper is to employ the fractional shifted Legendre polynomials (FSLPs) in the matrix form to approximate the fractional derivatives and find the numerical solutions of the one-dimensional space-fractional bioheat equation (SFBHE). The Caputo formula was utilized to approximate the fractional derivative. The proposed methodology applied for two examples showed its usefulness and efficiency. The numerical results showed that the utilized technique is very efficacious with high accuracy and good convergence.
This paper explores a fuzzy-logic based speed controller of an interior permanent magnet synchronous motor (IPMSM) drive based on vector control. PI controllers were mostly used in a speed control loop based field oriented control of an IPMSM. The fundamentals of fuzzy logic algorithms as related to drive control applications are illustrated. A complete comparison between two tuning algorithms of the classical PI controller and the fuzzy PI controller is explained. A simplified fuzzy logic controller (FLC) for the IPMSM drive has been found to maintain high performance standards with a much simpler and less computation implementation. The Matlab simulink results have been given for different mechanical operating conditions. The simulated
... Show More