Preferred Language
Articles
/
jih-2851
Calculation of Modes Properties for Single-Mode and Multimode Fibers at 633 nm
...Show More Authors

The need for optical fibers has emerged for its ability to transmit information with less attenuation and over long distances. In this work, four optical fibers with core radii from 1 μm to 4.75 μm in steps of 1.25 μm and a numerical aperture of 0.17 were studied and their modes properties have been calculated at a wavelength of 633 nm by using RP Fiber Calculator (free version 2022). Also, the effect of increasing the core radius on these properties has been studied. Multimode fibers can be obtained when the radius of the fiber core is large compared to the operating wavelength of the fiber which is less than the cutoff wavelength of the mode. Otherwise, a single-mode fiber is obtained. It has been concluded that all the calculated properties increase with increasing core radius. More than half of the power is contained in the core. Intensity profiles of all modes were illustrated.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design an Integral Sliding Mode Controller for a Nonlinear System
...Show More Authors

The goal of this paper is to design a robust controller for controlling a pendulum
system. The control of nonlinear systems is a common problem that is facing the researchers in control systems design. The Sliding Mode Controller (SMC) is the best solution for controlling a nonlinear system. The classical SMC consists from two phases. The first phase is the reaching phase and the second is the sliding phase. The SMC suffers from the chattering phenomenon which is considered as a severe problem and undesirable property. It is a zigzag motion along the switching surface. In this paper, the chattering is reduced by using a saturation function instead of sign function. In spite of SMC is a good method for controlling a nonlinear system b

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Sliding Mode Vibration Suppression Control Design for a Smart Beam
...Show More Authors

Active vibration control is the main problem in different structure. Smart material like piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active vibration control. In this paper piezoelectric elements are used as sensors and actuators in flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate the vibration induced by initial tip displacement which is equal to 15 mm.  It is designed based on the balance realization reduction method where three states are selected for the reduced model from the 24th states that describe the c

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Adaptive Sliding Mode Controller for Servo Actuator System with Friction
...Show More Authors

This paper addresses the use of adaptive sliding mode control for the servo actuator system with friction. The adaptive sliding mode control has several advantages over traditional sliding mode control method. Firstly, the magnitude of control effort is reduced to the minimal admissible level defined by the conditions for the sliding mode to exist. Secondly, the upper bounds of uncertainties are not required to be known in advance. Therefore, adaptive sliding mode control method can be effectively implemented. The numerical simulation via MATLAB 2014a for servo actuator system with friction is investigated to confirm the effectiveness of the proposed robust adaptive sliding mode control scheme. The results clarify, after

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 24 2017
Journal Name
Iraqi Journal Of Laser
All Fiber Chemical Liquids Refractive Index Sensor Based on Multimode Interference
...Show More Authors

A simple all optical fiber sensor based on multimode interference (MMI) for chemical liquids sensing was designed and fabricated. A segment of coreless fiber (CF) was spliced between two single mode fibers to buildup single mode-coreless-single mode (SCS) structure. Broadband source and optical signal analyzer were connected to the ends of SCS structure. De-ionized water, acetone, and n-hexane were used to test the performance of the sensor. Two influence factors on the sensitivity namely the length and the diameter of the CF were investigated. The obtained maximum sensitivity was at n-hexane at 340.89 nm/RIU (at a wavelength resolution of the optical spectrum analyzer of 0.02 nm) when the diameter of the CF reduced from 125 μm to 60 μ

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
A Study of Wear Rate Epoxy Resin filled with SiO2 particle and Glass fibers
...Show More Authors

This research is devoted to study the effect of different in weight percentage of Sio2 particles and glass fibers (5, 10, 15, 20) wt. % on the wear rate epoxy resin. The results show that the value of hardness increase with the increase for the weight percentage of reinforcing particles and fibers, while the wear rate decrease with the increase the load level of the reinforcing particles and fibers . The largest value of the hardness, and the lowest value of the wear rate for epoxy reinforced with 20% of SiO2, the wear rate increase in general with increasing the applied load.

View Publication Preview PDF
Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Removal of Zinc ions from industrial wastewater with wool fibers
...Show More Authors

In this research, the efficiency of low-cost unmodified wool fibers were used to remove zinc ion from industrial wastewater. Removal of zinc ion was achieved at 99.52% by using simple wool column. The experiment was carried out under varying conditions of (2h) contact time, metal ion concentration (50mg/l), wool fibers quantity to treated water (70g/l), pH(7) & acid concentration (0.05M). The aim of this method is to use a high sensitive, available & cheep natural material which applied successfully for industrial wastewater& synthetic water, where zinc ion concentration was reduced from (14.6mg/l) to (0.07mg/l) & consequently the hazardous effect of contamination was minimized.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Physics
Enhanced Mechanical Property of Acrylic Polymer/Graphene/Carbon Fibers Hybrid for Water Proof Coating
...Show More Authors

In this work, some mechanical properties of the polymer coating were improved by preparing a hybrid system containing Graphene (GR) of different weight percentages (0.25, 0.5, 1, and 2wt%) with 5wt% carbon fibres (CF) and added to a polymer coating by using casting method. The properties were improved as GR was added with further improvement on adding 5wt% of CF. The impact strength of acrylic polymer with GR increases with increasing weight ratio‏‏ of GR; maximum value was obtained when the polymer coating was incorporated with 1wt% GR and 5wt% CF. The impact strength of acrylic polymer with GR and GR/CF composites incorporated with GR at 1wt% and CF at 5wt%. Hardness increase with increasing weight ratio of Gr and a significant imp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
Robust Adaptive Sliding Mode Controller for a Nonholonomic Mobile Platform
...Show More Authors

In this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking.  The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Integral Sliding Mode Control Design for Electronic Throttle Valve System
...Show More Authors

Abstract

 One of the major components in an automobile engine is the throttle valve part. It is used to keep up with emissions and fuel efficiency low. Design a control system to the throttle valve is newly common requirement trend in automotive technology. The non-smoothness nonlinearity in throttle valve model are due to the friction model and the nonlinear spring, the uncertainty in system parameters and non-satisfying the matching condition are the main obstacles when designing a throttle plate controller.

In this work, the theory of the Integral Sliding Mode Control (ISMC) is utilized to design a robust controller for the Electronic Throttle Valve (ETV) system. From the first in

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 12 2022
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Different Curing Temperatures on the Properties of Geopolymer Reinforced with Micro Steel Fibers
...Show More Authors

In this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas

... Show More
View Publication
Crossref (7)
Crossref