In this work, some mechanical properties of the polymer coating were improved by preparing a hybrid system containing Graphene (GR) of different weight percentages (0.25, 0.5, 1, and 2wt%) with 5wt% carbon fibres (CF) and added to a polymer coating by using casting method. The properties were improved as GR was added with further improvement on adding 5wt% of CF. The impact strength of acrylic polymer with GR increases with increasing weight ratio of GR; maximum value was obtained when the polymer coating was incorporated with 1wt% GR and 5wt% CF. The impact strength of acrylic polymer with GR and GR/CF composites incorporated with GR at 1wt% and CF at 5wt%. Hardness increase with increasing weight ratio of Gr and a significant improvement was observed at 1wt% GR and 5wt% CF content. The tensile strength increases more significantly than the acrylic polymer with GR and GR/CF composites incorporated with GR at 1wt% and CF at 5wt%. Pull-off strength for the polymer coating with GR and CF was greater than for the acrylic polymer coating.
Coating materials have an extraordinarily high use, for industrial or technical applications. This study compares the effect of short glass and polypropylene fibers on the hardness, water absorption and anti-bacterial activity of acrylic composites against Gram positive (Streptococcus sp.) and Gram negative bacteria (E.coli, Pseudomonas aeruginosa, Klebsiella sp.).To prepare acrylic polymer and acryliccomposites (glass fibers and polypropylene fiber) the weight fraction (20 %,) (v0= lama acrylic, v1= lama acrylic/ glass fiber, and v2= lama acrylic /poly propylene fiber), of chopped glass fibers and polypropylene were added to acrylic , the resultant solution was stirred by hand for 5 minutes, using the Hand-lay-up technique.
Results s
Polymer composite materials were prepared by mixing epoxy resin with sand particles in three different grain size (150-300 ), (300-600 ) and (600- 1200) μm . The weight of epoxy was 15%, 20%, 25% and 30% of the total weight. Compression strength and flexural strength tests were carried out for the prepared samples .The percentages of epoxy resin at 20% wt and 25% wt showed best mechanical properties for all grain sizes .These percentages were adopted to fill the void between particles sand which have two different size ranges (150-600) μm and {(150-300) & (600-1200)} μm respectively to obtain more dense material. The results showed that the strength of polymer composite at 20% resin is higher than 25% resin. The
... Show MoreThis investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
High performance self-consolidating concrete HP-SCC is one of the most complex types of concrete which have the capacity to consolidated under its own weight, have excellent homogeneity and high durability. This study aims to focus on the possibility of using industrial by-products like Silica fumes SF in the preparation of HP-SCC enhanced with discrete steel fibers (DSF) and monofilament polypropylene fibers (PPF). From experimental results, it was found that using DSF with volume fraction of 0.50 %; a highly improvements were gained in the mechanical properties of HP-SCC. The compressive strength, splitting tensile strength, flexural strength and elastic modulus improved about 65.7 %, 70.5 %, 41.7 % and 80.3 % at 28 days age, respectively
... Show MoreAcrylic polymer/cement nanocomposites in dark and light colors have been developed for coating floors and swimming pools. This work aims to emphasize the effect of cement filling on the mechanical parameters, thermal stability, and wettability of acrylic polymer. The preparation was carried out using the casting method from acrylic polymer coating solution, which was added to cement nanoparticles (65 nm) with weight concentrations of (0, 1, 2, 4, and 8 wt%) to achieve high-quality specifications and good adhesion. Maximum impact strength and Hardness shore A were observed at cement ratios of 2 wt% and 4 wt%, respectively. Changing the filling ratio has a significant effect on the strain of the nanocomposites. The contact angle was i
... Show MoreThe mechanical properties of fiber-reinforced-polymer (FRP)
composites are dependent on the type amount, and orientation of fiber that is selected for a particular service. There are many commercially available reinforcement forms to meet the design requirements of the user. The ability of failure in the fiber architecture allows for optimized performance of a product that saves both weight and cost ( 12).
A modem technology is adopted to produce fibers (glass, kevelar,
and carbon) reinforced composite by using unsaturated polyester, where different volume fraction of these fibers are used (0, 0.2, 0.4, 0.6, 0.8, I)
reinfor
... Show MoreIn this study, epoxy was used as a matrix for composite materials, with E-glass fiber, jute and PVC fiber which was woven roving fiber, as reinforcement with volume fraction (Vf= 30%). There are two of prepared types of epoxy non reinforced, epoxy reinforced with E-glass, jute and PVC fibers including study of mechanical tests (Impact test, Bending test) different temperature and thermal conductivity and calculating the temperatures coefficient at different temperature. Results show that elastic modulus at rate values decrease to the increase of temperature and the impact strength, impact energy and thermal conductivity increase with increase temperature.