In this paper, we introduce a new complex integral transform namely ”Complex Sadik Transform”. The
properties of this transformation are investigated. This complex integral transformation is used to reduce
the core problem to a simple algebraic equation. The answer to this primary problem can than be obtained
by solving this algebraic equation and applying the inverse of complex Sadik transformation. Finally,
the complex Sadik integral transformation is applied and used to find the solution of linear higher order
ordinary differential equations. As well as, we present and discuss, some important real life problems
such as: pharmacokinetics problem ,nuclear physics problem and Beams Probem
ٳن العلاقة بين التخطيط والتنمية، تكتسب᾽ شكلها وطبيعتها من خلال دور التخطيط في ٳخضاع عملية التغيير والتحوّل للأوضاع الاقتصادية من وضع الى وضع آخر أكثر تقدما̋ عن طريق ٳعتماد منهج التخطيط لتحديد معالم خطوط السير المجدول زمنيا̋ لعملية التغيير والتحوّل وفقا̋ لرؤية الحكومة وفلسفتها باتجاه الانتقال من وضع ٳقتصادي وٳجتماعي متخلف الى وضع ٳقتصادي وٳجتماعي آخر يسمح بجعل عملية النمو مستمرة، ويمكن تبيّن تلك
... Show MoreThe method of operational matrices based on different types of polynomials such as Bernstein, shifted Legendre and Bernoulli polynomials will be presented and implemented to solve the nonlinear Blasius equations approximately. The nonlinear differential equation will be converted into a system of nonlinear algebraic equations that can be solved using Mathematica®12. The efficiency of these methods has been studied by calculating the maximum error remainder ( ), and it was found that their efficiency increases as the polynomial degree (n) increases, since the errors decrease. Moreover, the approximate solutions obtained by the proposed methods are compared with the solution of the 4th order Runge-Kutta meth
... Show MoreThere are many different methods for analysis of two-way reinforced concrete slabs. The most efficient methods depend on using certain factors given in different codes of reinforced concrete design. The other ways of analysis of two-way slabs are the direct design method and the equivalent frame method. But these methods usually need a long time for analysis of the slabs.
In this paper, a new simple method has been developed to analyze the two-way slabs by using simple empirical formulae, and the results of final analysis of some examples have been compared with other different methods given in different codes of practice.
The comparison proof that this simple proposed method gives good results and it can be used in analy
... Show MoreElectrocardiogram (ECG) is an important physiological signal for cardiac disease diagnosis. With the increasing use of modern electrocardiogram monitoring devices that generate vast amount of data requiring huge storage capacity. In order to decrease storage costs or make ECG signals suitable and ready for transmission through common communication channels, the ECG data
volume must be reduced. So an effective data compression method is required. This paper presents an efficient technique for the compression of ECG signals. In this technique, different transforms have been used to compress the ECG signals. At first, a 1-D ECG data was segmented and aligned to a 2-D data array, then 2-D mixed transform was implemented to compress the
In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
In this paper, we generalize many earlier differential operators which were studied by other researchers using our differential operator. We also obtain a new subclass of starlike functions to utilize some interesting properties.
In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
In this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
In this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.
In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.