In this work, the mass attenuation coefficient, effective atomic number and half value layer parameters were calculated for silicate (SiO2) mixed with various levels of lead oxide and iron oxide as reinforced materials. SiO2 was used with different concentrations of PbO and Fe2O3 (25, 50 and 75 weight %). The glass system was prepared by the melt-quenching method. The attenuation parameters were calculated at photon energies varying from 1keV to 100MeV using the XCOM program (version 3.1). In addition, the mass attenuation coefficient and half value layer parameters for selected glass samples were experimentally determined at photon energies 0.662 and 1.28 MeV emitted from radioactive sources 137Cs and 22Na respectively in a collimated narrow beam geometry set-up using 2"x2" NaI (Tl) scintillation detector. These values are found to be in agreement with the values computed theoretically. Moreover, these results were also compared with those for the commercial window glass. The effective atomic number ( Zeff ) and half value layer (HVL) results indicate that pbO+SiO2 was better gamma ray attenuation than Fe2O3+SiO2 and commercial window glass. This indicates that PbO+SiO2 glasses can be used as gamma ray shielding in replace of both of them in this energy range.
Our goal from this work is to find the linear prediction of the sum of two Poisson process
) ( ) ( ) ( t Y t X t Z + = at the future time 0 ), ( ≥ + τ τ t Z and that is when we know the values of
) (t Z in the past time and the correlation function ) (τ βz
Scheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy the
... Show MoreUrban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,
... Show MoreIn this paper , we study some approximation properties of the strong difference and study the relation between the strong difference and the weighted modulus of continuity
In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreAnalyzing the impacts of Cattaneo-Christov flux, bioconvective Raleigh number and cross diffusion effects in electrically conducting micropolar fluid through a paraboloid revolution is assessed in this work. Non-dimensional equations are solved numerically using shooting technique with an aid of Matlab software. The impact of various parameters on velocity, temperature and concentration are discussed in detail and presented graphically. Harman number and micro rotation parameters are found and have an increasing influence on shear stress. The vertical velocity increases at free stream and the horizontal velocity increases near the surface when Grb increases, which follows the opposite trend for accumulation of Rb. T
... Show MoreSuperconducting compound Bi2Sr2-xYxCa2Cu3O10+δ were Synthesized by method of solid state reaction, at 1033 K for 160 hours temperature of the sintering at normal atmospheric pressure where substitutions Yttrium oxide with Strontium. When Y2O3 concentration (0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). All specimens of Bi2Sr2Ca2Cu3O10+δ superconducting compounds were examined. The resistivity of electrical was checked by the four point probe technique, It was found th
six specimens of the Hg0.5Pb0.5Ba2Ca2Cu3-y
The main goal of this work is study the land cover changes for "Baghdad city" over a period of (30) years using multi-temporal Landsat satellite images (TM, ETM+ and OLI) acquired in 1984, 2000, and 2015 respectively. In this work, The principal components analysis transform has been utilized as multi operators, (i.e. enhancement, compressor, and temporal change detector). Since most of the image band's information are presented in the first PCs image. Then, the PC1 image for all three years is partitioned into variable sized blocks using quad tree technique. Several different methods of classification have been used to classify Landsat satellite images; these are, proposed method singular value decomposition (SVD) using Visual Basic sof
... Show MoreIn this paper we present the theoretical foundation of forward error analysis of numerical algorithms under;• Approximations in "built-in" functions.• Rounding errors in arithmetic floating-point operations.• Perturbations of data.The error analysis is based on linearization method. The fundamental tools of the forward error analysis are system of linear absolute and relative a prior and a posteriori error equations and associated condition numbers constituting optimal of possible cumulative round – off errors. The condition numbers enable simple general, quantitative bounds definitions of numerical stability. The theoretical results have been applied a Gaussian elimination, and have proved to be very effective means of both a prior
... Show More