Analyzing the impacts of Cattaneo-Christov flux, bioconvective Raleigh number and cross diffusion effects in electrically conducting micropolar fluid through a paraboloid revolution is assessed in this work. Non-dimensional equations are solved numerically using shooting technique with an aid of Matlab software. The impact of various parameters on velocity, temperature and concentration are discussed in detail and presented graphically. Harman number and micro rotation parameters are found and have an increasing influence on shear stress. The vertical velocity increases at free stream and the horizontal velocity increases near the surface when Grb increases, which follows the opposite trend for accumulation of Rb. The numerical results are compared with the available data indicating good agreement in a limiting case.
This paper presents a study for the influence of magnetohydrodynamic (MHD) on the oscillating flows of fractional Burgers’ fluid. The fractional calculus approach in the constitutive relationship model is introduced and a fractional Burgers’ model is built. The exact solution of the oscillating motions of a fractional Burgers’ fluid due to cosine and sine oscillations of an infinite flat plate are established with the help of integral transforms (Fourier sine and Laplace transforms). The expressions for the velocity field and the resulting shear stress that have been obtained, presented under integral and series form in terms of the generalized Mittag-Leffler function, satisfy all imposed initial and boundary conditions. Finall
... Show MoreIn this paper fractional Maxwell fluid equation has been solved. The solution is in the Mettag-Leffler form. For the corresponding solutions for ordinary Maxwell fluid are obtained as limiting case of general solutions. Finally, the effects of different parameters on the velocity and shear stress profile are analyzed through plotting the velocity and shear stress profile.
This paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.
In this paper, we studied the effect of magnetic hydrodynamic (MHD) on accelerated flows of a viscoelastic fluid with the fractional Burgers’ model. The velocity field of the flow is described by a fractional partial differential equation of fractional order by using Fourier sine transform and Laplace transform, an exact solutions for the velocity distribution are obtained for the following two problems: flow induced by constantly accelerating plate, and flow induced by variable accelerated plate. These solutions, presented under integral and series forms in terms of the generalized Mittag-Leffler function, are presented as the sum of two terms. The first term, represent the velocity field corresponding to a Newtonian fluid, and the se
... Show MoreThe present paper concerns with peristaltic analysis of MHD viscous fluid in a two dimensional channel with variable viscosity through a porous medium under the effect of slip condition. Along wave length and low Reynolds number assumption is used in the problem formulation. An analytic solution is presented for the case of hydrodynamic fluid while for magneto hydrodynamic fluid a series solution is obtained in the small power of viscosity parameter. The salient features of pumping and trapping phenomena are discussed in detail through a numerical integration. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail. When .
The aim of this paper is to analyzed unsteady heat transfer for magnetohydrodynamic (MHD) flow of a second grade fluid in a channel with porous medium. The equations which was used to describe the flow are the momentum and energy, these equations were written to get thier non dimentional form. Homotopy analysis method (HAM) is employed to obtain a semi-analytical solutions for velocity and heat transfer fields. The effect of each dimensionless parameter upon the velocity and temperature distributions is analyzed and shown graphically by using MATHEMATICA package.
generator the metal conductor is replaced by conducting gas plasma.
A mathematical model was created to study the influences of Hall current and Joule heating with wall slip conditions on peristaltic motion of Rabinowitsch fluid model through a tapered symmetric channel with Permeable Walls. The governing equations are simplified under low Reynolds number and the long-wavelength approximations. The perturbation method is used to solve the momentum equation. The physiological phenomena are studied for a certain set of pertinent parameters. The effects offered here show that the presence of the hall parameter, coefficient of pseudo-plasticity, and Hartman number impact the flow of the fluid model. Additional, study reveals that a height in the Hall parameter and the velocity slip parameter incre
... Show MoreIn this paper, the effect of both rotation and magnetic field on peristaltic transport of Jeffery fluid through a porous medium in a channel are studied analytically and computed numerically. Mathematical modeling is carried out by utilizing long wavelength and low Reynolds number assumptions. Closed form expressions for the pressure gradient, pressure rise, stream function, velocity and shear stress on the channel walls have been computed numerically. Effects of Hartman number, time mean flow, wave amplitude, porosity and rotation on the pressure gradient, pressure rise, stream function, velocity and shear stress are discussed in detail and shown graphically. The results indicate that the effect of Hartman number, time mean flow, wave a
... Show More