In this work, the mass attenuation coefficient, effective atomic number and half value layer parameters were calculated for silicate (SiO2) mixed with various levels of lead oxide and iron oxide as reinforced materials. SiO2 was used with different concentrations of PbO and Fe2O3 (25, 50 and 75 weight %). The glass system was prepared by the melt-quenching method. The attenuation parameters were calculated at photon energies varying from 1keV to 100MeV using the XCOM program (version 3.1). In addition, the mass attenuation coefficient and half value layer parameters for selected glass samples were experimentally determined at photon energies 0.662 and 1.28 MeV emitted from radioactive sources 137Cs and 22Na respectively in a collimated narrow beam geometry set-up using 2"x2" NaI (Tl) scintillation detector. These values are found to be in agreement with the values computed theoretically. Moreover, these results were also compared with those for the commercial window glass. The effective atomic number ( Zeff ) and half value layer (HVL) results indicate that pbO+SiO2 was better gamma ray attenuation than Fe2O3+SiO2 and commercial window glass. This indicates that PbO+SiO2 glasses can be used as gamma ray shielding in replace of both of them in this energy range.
Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show MoreThe standard formulation of Wave Intensity Analysis (WIA) assumes that the flow velocity (U) in the conduit is <;<; the velocity of propagation of waves (c) in the system, and Mach number, M=U/c, is negligible. However, in the large conduit arteries, U is relatively high due to ventricular contraction and c is relatively low due to the large compliance; thus M is > 0, and may not be ignored. Therefore, the aim of this study is to identify experimentally the relationship between M and the reflection coefficient in vitro. Combinations of flexible tubes, of 2 m in length with isotropic and uniform circular cross sectional area along their longitudinal axes, were used to present mother and daughter tubes to produce a range of reflection coeffic
... Show MoreThe design and implementation of an active router architecture that enables flexible network programmability based on so-called "user components" will be presents. This active router is designed to provide maximum flexibility for the development of future network functionality and services. The designed router concentrated mainly on the use of Windows Operating System, enhancing the Active Network Encapsulating Protocol (ANEP). Enhancing ANEP gains a service composition scheme which enables flexible programmability through integration of user components into the router's data path. Also an extended program that creates and then injects data packets into the network stack of the testing machine will be proposed, we will call this program
... Show MoreBackground: This study was done to assist X-ray diffraction and biocompatability of glass ionomer cement reinforced by different ratios of Hydroxyapatite. Materials and Methods: The powder of glass ionomer cement reinforced by different ratios of Hydroxyapatite were used to get X-ray diffraction pattern by X-ray diffraction machine, While for biocompatibility test, A polyethylene tubes containing glass ionomer cement reinforced by different ratios of Hydroxyapatite were implanted on the dorsal submucosal site of Rabbit's tissues and histological slide were prepared for histopathological study. Results: X-ray diffraction test showed that all elements of glass ionomer cement reinforced by different ratios of Hydroxyapatite were react with eac
... Show MoreFilms of silver oxide of different thickness have been prepared by the chemical spray paralysis. Transmission and absorption spectra have recorded in order to study the effect of increasing thickness on some optical parameter such as reflectance, refractive index , and dielectric constant in its two parts . This study reveals that all these paramters affect by increasing the thickness .
The electrical properties of Poly (ethylene oxide)-MnCl2 Composites were studied by using the impedance technique. The study was carried out as a function of frequency in the range from 10 Hz to 13 MHz and MnCl2 salt concentration ranged from 0% to 20% by weight. It was found that the dielectric constants and the dielectric loss of the prepared films increase with the increase of the MnCl2 concentration; The A.C. conductivity increases with the increase of the applied frequency, and the MnCl2 content in the composite membrane. Relaxation processes were observed to take place for composites which have a high salt concentration. The observed relaxation and polarization effects of the composite are mainly attributed to the dielectric
... Show MoreThe structural, optical properties of copper oxide thin films ( CuO) thin films which have been prepared by thermal oxidation with exist air once and oxygen another have been studied. Structural analysis results of Cu thin films demonstrate that the single phase of Cu with high a crystalline structure with a preferred orientation (111). X-ray diffraction results confirm the formation of pure (CuO) phase in both methods of preparation. The optical constant are investigated and calculated such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-1100) nm.