Heart diseases are diverse, common, and dangerous diseases that affect the heart's function. They appear as a result of genetic factors or unhealthy practices. Furthermore, they are the leading cause of mortalities in the world. Cardiovascular diseases seriously concern the health and activity of the heart by narrowing the arteries and reducing the amount of blood received by the heart, which leads to high blood pressure and high cholesterol. In addition, healthcare workers and physicians need intelligent technologies that help them analyze and predict based on patients’ data for early detection of heart diseases to find the appropriate treatment for them because these diseases appear on the patient without pain or noticeable symptoms, which leads to severe concerns such as heart failure and stroke and kidney failure. In this regard, the authors highlight an amount of literature considered the most practical in utilizing machine learning techniques in predicting heart disease. Twenty articles were chosen out of fifty articles gathered and summarised in a table form. The main goal is to make this article a reference that can be utilized in the future to assist healthcare workers in studying these techniques with ease and saving time and effort on them. This article has concluded that machine learning techniques have a significant and influential role in analyzing disease data, predicting heart disease, and assisting decision-making. In addition, these techniques can analyze data that reaches millions of cohorts.
Image Fusion is being used to gather important data from such an input image array and to place it in a single output picture to make it much more meaningful & usable than either of the input images. Image fusion boosts the quality and application of data. The accuracy of the image that has fused depending on the application. It is widely used in smart robotics, audio camera fusion, photonics, system control and output, construction and inspection of electronic circuits, complex computer, software diagnostics, also smart line assembling robots. In this paper provides a literature review of different image fusion techniques in the spatial domain and frequency domain, such as averaging, min-max, block substitution, Intensity-Hue-Saturation(IH
... Show MoreCeruloplasmin (Cp) is one of the acute phase protein, in this review ,we studied the level of ceruloplasmin with copper (Cu) and iron in 90 patients with coronary heart diseas ( those patients are divided into three groups, whom are stable angina , unstable angina and myocardial infarction compared with 30 healthy volunteers) and the roles of them as diagnostic and prognostic tools.The diagnosis was attend by a clinical examination carried out by the consult medical staff in Ibn AL-Nafis hospital. The result: ceruloplasmin recorded a significantly(p<0.05)higher level in all patient groups compared with the control, so this result supports the hypothesis that a high serum ceruloplasmin level is a risk factor for coronary heart di
... Show MoreThis paper uses Artificial Intelligence (AI) based algorithm analysis to classify breast cancer Deoxyribonucleic (DNA). Main idea is to focus on application of machine and deep learning techniques. Furthermore, a genetic algorithm is used to diagnose gene expression to reduce the number of misclassified cancers. After patients' genetic data are entered, processing operations that require filling the missing values using different techniques are used. The best data for the classification process are chosen by combining each technique using the genetic algorithm and comparing them in terms of accuracy.
With the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.
Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreHeart disease is a non-communicable disease and the number 1 cause of death in Indonesia. According to WHO predictions, heart disease will cause 11 million deaths in 2020. Bad lifestyle and unhealthy consumption patterns of modern society are the causes of this disease experienced by many people. Lack of knowledge about heart conditions and the potential dangers cause heart disease attacks before any preventive measures are taken. This study aims to produce a system for Predicting Heart Disease, which benefits to prevent and reduce the number of deaths caused by heart disease. The use of technology in the health sector has been widely practiced in various places and one of the advanced technologies is machine lea
... Show MoreBackground: Cardiovascular diseases are among the most common cause of death in Developed countries. In addition to traditional risk factors for cardiovascular disease, nowadays, accumulating evidence indicates that a variety of infectious agents may contribute to pathogenesis of ischemic heart disease.
Patients and methods: 125 patients (25 females and 100 males) attending the department of cardiology, Baghdad, teaching hospital over the period December 2008- June 2009were enrolled. Their age range between (39-75 years) compared with 50 healthy individuation (Age & sex matched). The sera were tested for H. pylori antibodies using enzyme linked immunosorbent assay (ELISA).
Results: 80% of pa
Corona virus sickness has become a big public health issue in 2019. Because of its contact-transparent characteristics, it is rapidly spreading. The use of a face mask is among the most efficient methods for preventing the transmission of the Covid-19 virus. Wearing the face mask alone can cut the chance of catching the virus by over 70\%. Consequently, World Health Organization (WHO) advised wearing masks in crowded places as precautionary measures. Because of the incorrect use of facial masks, illnesses have spread rapidly in some locations. To solve this challenge, we needed a reliable mask monitoring system. Numerous government entities are attempting to make wearing a face mask mandatory; this process can be facilitated by using face m
... Show MoreThe use of multimedia technology is growing every day, and it is difficult and time-consuming to provide allowed data while preventing secret information from being used without authorization. The material that has been watermarked can only be accessed by authorized users. Digital watermarking is a popular method for protecting digital data. The embedding of secret data into actual information is the subject of digital watermarking. This paper examines watermarking techniques, methodologies, and attacks, as well as the development of watermarking digital images stored in both the spatial and frequency domains.