The nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solution with finite order has hyper order equals to the lower order of one of its coefficients is proved. In this case, the condition that the lower order of one of the coefficients is greater than the maximum of the lower order of the other coefficients and the lower order of the nonhomogeneous part is assumed.
In this paper, the author established some new integral conditions for the oscillation of all solutions of nonlinear first order neutral delay differential equations. Examples are inserted to illustrate the results.
In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.
In this paper, we consider inequalities in which the function is an element of n-th partially order space. Local and Global uniqueness theorem of solutions of the n-the order Partial differential equation Obtained which are applications of Gronwall's inequalities.
The author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.
in this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
The purpose of this research paper is to present the second-order homogeneous complex differential equation , where , which is defined on the certain complex domain depends on solution behavior. In order to demonstrate the relationship between the solution of the second-order of the complex differential equation and its coefficient of function, by studying the solution in certain cases: a meromorphic function, a coefficient of function, and if the solution is considered to be a transformation with another complex solution. In addition, the solution has been provided as a power series with some applications.
In this paper generalized spline method is used for solving linear system of fractional integro-differential equation approximately. The suggested method reduces the system to system of linear algebraic equations. Different orders of fractional derivative for test example is given in this paper to show the accuracy and applicability of the presented method.
In this paper, we will study and prove the existence and the uniqueness theorems
of solutions of the generalized linear integro-differential equations with unequal
fractional order of differentiation and integration by using Schauder fixed point
theorem. This type of fractional integro-differential equation may be considered as a
generalization to the other types of fractional integro-differential equations
Considered by other researchers, as well as, to the usual integro-differential
equations.
In this paper we prove the boundedness of the solutions and their derivatives of the second order ordinary differential equation x ?+f(x) x ?+g(x)=u(t), under certain conditions on f,g and u. Our results are generalization of those given in [1].