The nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solution with finite order has hyper order equals to the lower order of one of its coefficients is proved. In this case, the condition that the lower order of one of the coefficients is greater than the maximum of the lower order of the other coefficients and the lower order of the nonhomogeneous part is assumed.
The Population growth and decay issues are one of the most pressing issues in many sectors of study. These issues can be found in physics, chemistry, social science, biology, and zoology, among other subjects.
We introduced the solution for these problems in this paper by using the SEJI (Sadiq- Emad- Jinan) integral transform, which has some mathematical properties that we use in our solutions. We also presented the SEJI transform for some functions, followed by the inverse of the SEJI integral transform for these functions. After that, we demonstrate how to use the SEJI transform to tackle population growth and decay problems by presenting two applications that demonstrate how to use this transform to obtain solutions.
Fin
... Show MoreThe study aimed to know the degree to which Islamic education teachers employ the strategy of directed discovery in teaching to develop higher thinking skills (analysis, synthesis, and evaluation) among sixth-grade students at the basic stage in East Nile Province, Khartoum State - Sudan. The researcher used the descriptive-analytical method, and adopted a questionnaire that consisted of (15) indicators representing the skills of analysis, synthesis, and evaluation as a tool of the study. A random sample of (175) Islamic education teachers was selected, from the Department of Basic Education. The data were analyzed according to the Statistical Packages for Social Sciences (SPSS) program, and the results of the study have shown that the u
... Show MoreThe techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreIn this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.
In this paper, we introduce a new complex integral transform namely ”Complex Sadik Transform”. The
properties of this transformation are investigated. This complex integral transformation is used to reduce
the core problem to a simple algebraic equation. The answer to this primary problem can than be obtained
by solving this algebraic equation and applying the inverse of complex Sadik transformation. Finally,
the complex Sadik integral transformation is applied and used to find the solution of linear higher order
ordinary differential equations. As well as, we present and discuss, some important real life problems
such as: pharmacokinetics problem ,nuclear physics problem and Beams Probem
The main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
This article studied some linear and nonlinear optical characteristics of different pH solutions from anthocyanin dye extract at 180 oC from red cabbage. First, the linear spectral characteristics, including absorption and transmittance in the range 400-800 nm for anthocyanin solution 5% v/v with different pHs, were achieved utilizing a UV/VIS spectrophotometer. The experimental results reveal a shift in the absorption toward the longer wavelength direction as pH values increment. Then, the nonlinear features were measured using the Z-scan technique with a CW 532 nm laser to measure the nonlinear absorption coefficient through an open aperture. A close aperture (diameter 2 mm) calculates the nonlinear refractive index. The open Z-scan sh
... Show More