Preferred Language
Articles
/
jih-2776
Iterative Method for Solving a Nonlinear Fourth Order Integro-Differential Equation

This study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approximate solutions were compared with the classic Runge-Kutta method (RK4M) where good agreements were observed. For more accuracy the maximum error remainder was found, and the absolute error was computed between the semi-analytical method and the numerical method RK4M.  Mathematica® 11 was used as a program for calculations.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Multistage and Numerical Discretization Methods for Estimating Parameters in Nonlinear Linear Ordinary Differential Equations Models.

Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Towards Solving Fractional Order Delay Variational Problems Using Euler Polynomial Operational Matrices

     In this paper, we introduce an approximate method for solving fractional order delay variational problems using fractional Euler polynomials operational matrices. For this purpose, the operational matrices of fractional integrals and derivatives are designed for Euler polynomials. Furthermore, the delay term in the considered functional is also decomposed in terms of the operational matrix of the fractional Euler polynomials. It is applied and substituted together with the other matrices of the fractional integral and derivative into the suggested functional. The main equations are then reduced to a system of algebraic equations. Therefore, the desired solution to the original variational problem is obtained by solving the resul

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Crossref (2)
Crossref
View Publication
Publication Date
Sat Oct 28 2023
Journal Name
Baghdad Science Journal
Newton-Kantorovich Method for Solving One of the Non-Linear Sturm-Liouville Problems

Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Oscillations of First Order Neutral Differential Equations with Positive and Negative Coefficients

Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.

Crossref
View Publication Preview PDF
Publication Date
Wed Apr 01 2020
Journal Name
Isa Transactions
Scopus (34)
Crossref (28)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
Correction of Spherical Aberration of an Immersion Lens Operating Under Space Charge Effect Described by a 2nd Order Equation

The present work represents a theoretical study for the correction of spherical aberration of an immersion lens of axial symmetry operating under the effect of space charge, represented by a second order function and preassigned magnification conditions in a focusing of high current ion beams. The space charge depends strongly on the value of the ionic beam current which is found to be very effective and represents an important factor effecting the value of spherical aberration .The distribution of the space charge was measured from knowing it's density .It is effect on the trajectory of the ion beam was studied. To obtain the trajectories of the charged particles which satisfy the preassined potential the axial electrostatic potential w

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
The Continuous Classical Optimal Control of a Couple Nonlinear Hyperbolic Partial Differential Equations with Equality and Inequality Constraints

This paper is concerned with the existence of a unique state vector solution of a couple nonlinear hyperbolic equations using the Galerkin method when the continuous classical control vector is given, the existence theorem of a continuous classical optimal control vector with equality and inequality vector state constraints is proved, the existence of a unique solution of the adjoint equations associated with the state equations is studied. The Frcéhet derivative of the Hamiltonian is obtained. Finally the theorems of the necessary conditions and the sufficient conditions of optimality of the constrained problem are proved.

View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Crossref (21)
Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Journal Of Computational Science
Crossref (21)
Clarivate Crossref