This paper introduces the concept of fuzzy σ-ring as a generalization of fuzzy σ-algebra and basic properties; examples of this concept have been given. As the first result, it has been proved that every σ-algebra over a fuzzy set x* is a fuzzy σ-ring-over a fuzzy set x* and construct their converse by example. Furthermore, the fuzzy ring concept has been studied to generalize fuzzy algebra and its relation. Investigating that the concept of fuzzy σ-Ring is a stronger form of a fuzzy ring that is every fuzzy σ-Ring over a fuzzy set x* is a fuzzy ring over a fuzzy set x* and construct their converse by example. In addition, the idea of the smallest, as an important property in the study of real analysis, is studied as well. Finally, the main goal of this paper is to study these concepts and give basic properties, examples, characterizations and relationships between them.
Let R be a commutative ring with identity, and M be a left untial module. In this paper we introduce and study the concept w-closed submodules, that is stronger form of the concept of closed submodules, where asubmodule K of a module M is called w-closed in M, "if it has no proper weak essential extension in M", that is if there exists a submodule L of M with K is weak essential submodule of L then K=L. Some basic properties, examples of w-closed submodules are investigated, and some relationships between w-closed submodules and other related modules are studied. Furthermore, modules with chain condition on w-closed submodules are studied.
In this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
We define and study new ideas of fibrewise topological space namely fibrewise multi-topological space . We also submit the relevance of fibrewise closed and open topological space . Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space . Furthermore, we propose and prove a number of statements about these ideas. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise multi-T0. spaces, fibrewise multi-T1spaces, fibrewise multi-R0 spaces, fibrewise multi-Hausdorff spaces, fibrewise multi-functionally Hausdorff spaces, fibrewise multi-regular spaces, fibrewise multi-completely regular spaces, fibrewise multi-normal
... Show MoreLet be a commutative ring with identity, and be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule of an -module is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule of with is a submodule of such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of pseudo weakly closed
... Show MoreIn this paper we tend to describe the notions of intuitionistic fuzzy asly ideal of ring indicated by (I. F.ASLY) ideal and, we will explore some properties and connections about this concept.
Let R be commutative Ring , and let T be unitary left .In this paper ,WAPP-quasi prime submodules are introduced as new generalization of Weakly quasi prime submodules , where proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either r tϵ C +soc or s tϵC +soc .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied
Our aim in this paper is to introduce the notation of nearly primary-2-absorbing submodule as generalization of 2-absorbing submodule where a proper submodule of an -module is called nearly primary-2-absorbing submodule if whenever , for , , , implies that either or or . We got many basic, properties, examples and characterizations of this concept. Furthermore, characterizations of nearly primary-2-absorbing submodules in some classes of modules were inserted. Moreover, the behavior of nearly primary-2-absorbing submodule under -epimorphism was studied.
Let R be a commutative ring with identity and E be a unitary left R – module .We introduce and study the concept Weak Pseudo – 2 – Absorbing submodules as generalization of weakle – 2 – Absorbing submodules , where a proper submodule A of an R – module E is called Weak Pseudo – 2 – Absorbing if 0 ≠rsx A for r, s R , x E , implies that rx A + soc ( E ) or sx A + soc (E) or rs [ A + soc ( E ) E ]. Many basic properties, char
... Show MoreThe concept of a small f- subm was presented in a previous study. This work introduced a concept of a hollow f- module, where a module is said to be hollow fuzzy when every subm of it is a small f- subm. Some new types of hollow modules are provided namely, Loc- hollow f- modules as a strength of the hollow module, where every Loc- hollow f- module is a hollow module, but the converse is not true. Many properties and characterizations of these concepts are proved, also the relationship between all these types is researched. Many important results that explain this relationship are demonstrated also several characterizations and properties related to these concepts are given.