This paper develop conventional Runge-Kutta methods of order four and order five to solve ordinary differential equations with oscillating solutions. The new modified Runge-Kutta methods (MRK) contain the invalidation of phase lag, phase lag’s derivatives, and ampliï¬cation error. Numerical tests from their outcomes show the robustness and competence of the new methods compared to the well-known Runge-Kutta methods in the scientiï¬c literature.
Exponential Distribution is probably the most important distribution in reliability work. In this paper, estimating the scale parameter of an exponential distribution was proposed through out employing maximum likelihood estimator and probability plot methods for different samples size. Mean square error was implemented as an indicator of performance for assumed several values of the parameter and computer simulation has been carried out to analysis the obtained results
During the last few decades, many academic and professional groups gave attention to adopting the multi-criteria decision-making methods in a variety of contexts for decision-making that are given to the diversity and sophistication of their selections. Five different classification methods are tested and assessed in this paper. Each has its own set of five attribute selection approaches. By using the multi-criteria decision-making procedures, these data can be used to rate options. Technique for order of preference by similarity to ideal solution (TOPSIS) is designed utilizing a modified fuzzy analytic hierarchy process (MFAHP) to compute the weight alternatives for TOPSIS in order to obtain the confidence value of each class
... Show MoreThe fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).
This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them
One of the serious problems in any wireless communication system using multi carrier modulation technique like Orthogonal Frequency Division Multiplexing (OFDM) is its Peak to Average Power Ratio (PAPR).It limits the transmission power due to the limitation of dynamic range of Analog to Digital Converter and Digital to Analog Converter (ADC/DAC) and power amplifiers at the transmitter, which in turn sets the limit over maximum achievable rate.
This issue is especially important for mobile terminals to sustain longer battery life time. Therefore reducing PAPR can be regarded as an important issue to realize efficient and affordable mobile communication services.
... Show More
In this paper, we investigate some methods to solve one of the multi-criteria machine scheduling problems. The discussed problem is the total completion time and the total earliness jobs To solve this problem, some heuristic methods are proposed which provided good results. The Branch and Bound (BAB) method is applied with new suggested upper and lower bounds to solve the discussed problem, which produced exact results for in a reasonable time.
Simulated annealing (SA) has been an effective means that can address difficulties related to optimization problems. is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP) is one of the most considerable problems in production planning, in this paper, we present multi-objective linear programming model for APP and optimized by . During the course of optimizing for the APP problem, it uncovered that the capability of was inadequate and its performance was substandard, particularly for a sizable controlled problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state wi
... Show MoreThe basic goal of this research is to utilize an analytical method which is called the Modified Iterative Method in order to gain an approximate analytic solution to the Sine-Gordon equation. The suggested method is the amalgamation of the iterative method and a well-known technique, namely the Adomian decomposition method. A method minimizes the computational size, averts round-off errors, transformation and linearization, or takes some restrictive assumptions. Several examples are chosen to show the importance and effectiveness of the proposed method. In addition, a modified iterative method gives faster and easier solutions than other methods. These solutions are accurate and in agreement with the series
... Show MoreIn this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.