Background: viruses are responsible for a large proportion of lower respiratory tract infections (LRTIs). Other causes of LRTIs are bacteria: Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, and Staphylococcus aureus being the most common. Sputum samples are commonly used in the microbiological laboratory for diagnosing lower respiratory infections. Objective: The aim of this study to evaluate the causative bacteria and antibiotics sensitivity in culture of sputum samples. Patients Methods: A retrospective study performed in the microbiology department of Al Immamin Al Kahdimin Medical laboratory in Baghdad. The results of sputum cultures collected from the files between 2016 and 2019. A total number of 131 included in the study of adults and both sexes. Organisms were identified and tested for the antibiotic susceptibility did for selected cases which ordered by the doctor needed. Results: The number of 131 were enrolled. The age of patients was between 17-85 years with mean age 46.69. The higher incidence of patients between ages 51-60 years (21.4 %). The female were 40.5%, the male 59.5%. 65 (49.62%) patients from the medical ward, 50 (38.17) from respiratory care unit (RCU). Acinetobacter spp was the most common bacteria isolated, in forty four (33.59%) cases, which was resistant to most antibiotics. followed by Streptococcus pneumonia (22.90%), Pseudomonas aeruginosa (16.03%),Escherichia coli in eleven (8.40) cases, with variable antibiotics sensitivity and resistance. Conclusion: sputum culture and sensitivity may help in identifying the organism and choosing the antibiotic, which may be resistant to many drugs as in Acinetobacter spp.
In this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indi
... Show More
The increase in military spending has become a feature of the times for many countries, including China. They have sought to increase their defence spending, not with the aim of domination and possession, but rather to protect their economic interests and to secure their foreign trade. The research aims to identify the impact of military spending by studying the nature of defence spending and its role in providing security. And stability and facilitating foreign investment in it, as well as storming the military industry, securing some humanitarian supplies, and participating in a variety of public works that can be used in the civil and military fields, and the aim of the research is to id
... Show MoreThe international financial accounting and reporting standards IFRS/IAS represent the set of rules and foundations that the economic entity must follow in the measurement, presentation, and disclosure of the elements of the financial statements, the implementation of adopting the international financial reporting standards contributes to improving the qualitative characteristics of accounting information, so the current research aims to explain the role of adopting the International Accounting Standard (IAS) in improving the qualitative characteristics as well as analyzing the impact of the adoption of IAS.1 in improving the qualitative characteristics of accounting information within the financi
... Show MoreIn this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indicates the broadening of diffraction peaks for nano
... Show MoreThree-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.
User confidentiality protection is concerning a topic in control and monitoring spaces. In image, user's faces security in concerning with compound information, abused situations, participation on global transmission media and real-world experiences are extremely significant. For minifying the counting needs for vast size of image info and for minifying the size of time needful for the image to be address computationally. consequently, partial encryption user-face is picked. This study focuses on a large technique that is designed to encrypt the user's face slightly. Primarily, dlib is utilizing for user-face detection. Susan is one of the top edge detectors with valuable localization characteristics marked edges, is used to extract
... Show MoreThis paper is employed to discuss the effects of the magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid through a porous medium in the cilia channel. The governing equations (mass, motion, and energy) are formulated and then the assumptions of long wavelength and low Reynold number are used for simplification. The velocity field, pressure gradient, temperature, and streamlines are obtained when the perturbation technique is applied to solve the nonlinear partial differential equations. The study shows that the velocity is decreased with increasing Hartmann number while it is decreased with increasing the porosity.