Preferred Language
Articles
/
jih-2613
Weakly Approximaitly Quasi-Prime Submodules And Related Concepts
...Show More Authors

           Let R be  commutative Ring , and let T be  unitary left .In this paper ,WAPP-quasi prime submodules are introduced as  new generalization of Weakly quasi prime submodules , where  proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either  r tϵ C +soc   or  s tϵC +soc  .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On 2-Absorbing Submodules
...Show More Authors

 Let R be a commutative ring with 10 and M is a unitary R-module . In this paper , our aim is to continue studying 2-absorbing submodules which are introduced by  A.Y. Darani and F. Soheilina . Many new properties and characterizations are given .

View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Almost and Strongly Almost Approximately Nearly Quasi Compactly Packed Modules
...Show More Authors

In this paper, we present the almost approximately nearly quasi compactly packed (submodules) modules as an application of the almost approximately nearly quasiprime submodule. We give some examples, remarks, and properties of this concept. Also, as the strong form of this concept, we introduce the strongly, almost approximately nearly quasi compactly packed (submodules) modules. Moreover, we present the definitions of almost approximately nearly quasiprime radical submodules and almost approximately nearly quasiprime radical submodules and give some basic properties of these concepts that will be needed in section four of this research. We study these two concepts extensively.

View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
E-small prime sub-modules and e-small prime modules
...Show More Authors

Scopus Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weak Essential Fuzzy Submodules Of Fuzzy Modules
...Show More Authors

        Throughout this paper, we introduce the notion of weak essential F-submodules of F-modules as a generalization of  weak essential submodules. Also we study the homomorphic image and inverse image of weak essential F-submodules.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Coprime Submodules
...Show More Authors

  Let R be a commutative ring with unity and let M be a unitary R-module. Let N be a proper submodule of M, N is called a coprime submodule if   is a coprime R-module, where   is a coprime R-module if for any r  R, either O      r or     r .         In this paper we study coprime submodules and give many properties related with this concept.

View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
T-Essentially Coretractable and Weakly T-Essentially Coretractable Modules
...Show More Authors

        A new generalizations of coretractable modules are introduced where a module  is called t-essentially (weakly t-essentially) coretractable if for all proper submodule  of , there exists f End( ), f( )=0 and Imf tes  (Im f + tes ). Some basic properties are studied and many relationships between these classes and other related one are presented.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2008
Journal Name
Al-mustansiriyah Journal Of Science
Weakly (resp., Closure, Strongly) Perfect Mappings
...Show More Authors

In this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.

Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Space of Primary La-submodules
...Show More Authors

     Suppose that F is a reciprocal ring which has a unity and suppose that H is an F-module. We topologize La-Prim(H), the set of all primary La-submodules of H , similar to that for FPrim(F), the spectrum of fuzzy primary ideals of F, and examine the characteristics of this topological space. Particularly, we will research the relation between La-Prim(H) and La-Prim(F/ Ann(H)) and get some results.

View Publication Preview PDF
Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fuzzy Soc-Semi-Prime Sub-Modules
...Show More Authors

     In this paper, we study a new concept of fuzzy sub-module, called  fuzzy socle semi-prime sub-module that is a generalization the concept of semi-prime fuzzy sub-module and fuzzy of approximately semi-prime sub-module in the ordinary sense.  This leads us to introduce level property which studies the relation between the ordinary and fuzzy sense of approximately semi-prime sub-module. Also, some of its characteristics and notions such as the intersection, image and external direct sum of fuzzy socle semi-prime sub-modules are introduced. Furthermore, the relation between the fuzzy socle semi-prime sub-module and other types of fuzzy sub-module presented.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Jordan ?-Centralizers of Prime and Semiprime Rings
...Show More Authors

The purpose of this paper is to prove the following result: Let R be a 2-torsion free ring and T: R?R an additive mapping such that T is left (right) Jordan ?-centralizers on R. Then T is a left (right) ?-centralizer of R, if one of the following conditions hold (i) R is a semiprime ring has a commutator which is not a zero divisor . (ii) R is a non commutative prime ring . (iii) R is a commutative semiprime ring, where ? be surjective endomorphism of R . It is also proved that if T(x?y)=T(x)??(y)=?(x)?T(y) for all x, y ? R and ?-centralizers of R coincide under same condition and ?(Z(R)) = Z(R) .

View Publication Preview PDF
Crossref