Preferred Language
Articles
/
jih-2557
The Necessary Condition for Optimal Boundary Control Problems for Triple Elliptic Partial Differential Equations
...Show More Authors

       In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV)  by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Extend Differential Transform Methods for Solving Differential Equations with Multiple Delay
...Show More Authors

In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.

 

View Publication Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Existence of Positive Solution for Boundary Value Problems
...Show More Authors

  This paper studies the existence of  positive solutions for the following boundary value problem :-
 
 y(b) 0 α y(a) - β y(a) 0     bta             f(y) g(t) λy    
 
 
The solution procedure follows using the Fixed point theorem and obtains that this problem has at least one positive solution .Also,it determines (  ) Eigenvalue which would be needed to find the positive solution .

View Publication Preview PDF
Publication Date
Tue May 01 2012
Journal Name
Engineering Analysis With Boundary Elements
Radial integration boundary integral and integro-differential equation methods for two-dimensional heat conduction problems with variable coefficients
...Show More Authors

View Publication
Crossref (32)
Crossref
Publication Date
Sun Jul 04 2021
Journal Name
(al-qadisiyah-journal Of Pure Science(qjps
Reliable Iterative Method for solving Volterra - Fredholm Integro Differential Equations
...Show More Authors

The aim of this paper is to propose a reliable iterative method for resolving many types of Volterra - Fredholm Integro - Differential Equations of the second kind with initial conditions. The series solutions of the problems under consideration are obtained by means of the iterative method. Four various problems are resolved with high accuracy to make evident the enforcement of the iterative method on such type of integro differential equations. Results were compared with the exact solution which exhibits that this technique was compatible with the right solutions, simple, effective and easy for solving such problems. To evaluate the results in an iterative process the MATLAB is used as a math program for the calculations.

View Publication
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
New Approach for Solving Three Dimensional Space Partial Differential Equation
...Show More Authors

This paper presents a new transform method to solve partial differential equations, for finding suitable accurate solutions in a wider domain. It can be used to solve the problems without resorting to the frequency domain. The new transform is combined with the homotopy perturbation method in order to solve three dimensional second order partial differential equations with initial condition, and the convergence of the solution to the exact form is proved. The implementation of the suggested method demonstrates the usefulness in finding exact solutions. The practical implications show the effectiveness of approach and it is easily implemented in finding exact solutions.

       Finally, all algori

... Show More
View Publication Preview PDF
Scopus (21)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Some Fractional Partial Differential Equations by Invariant Subspace and Double Sumudu Transform Methods
...Show More Authors

      In this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform ”double  Sumudu ”. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace method”. All results are illustrative numerically and graphically.

View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Efficient Approach for Solving (2+1) D- Differential Equations
...Show More Authors

     In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.

View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 30 2014
Journal Name
Iosr Journal Of Mathematics
Modification Adomian Decomposition Method for solving Seventh OrderIntegro-Differential Equations
...Show More Authors

In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.

View Publication
Publication Date
Sat Mar 30 2024
Journal Name
Journal Of Kufa For Mathematics And Computer
Approximate Solution of Linear and Nonlinear Partial Differential Equations Using Picard’s Iterative Method
...Show More Authors

Publication Date
Sun Mar 01 2009
Journal Name
Diyala Journal Of Human Research
Stability of the Finite Difference Methods of Fractional Partial Differential Equations Using Fourier Series Approach
...Show More Authors

The fractional order partial differential equations (FPDEs) are generalizations of classical partial differential equations (PDEs). In this paper we examine the stability of the explicit and implicit finite difference methods to solve the initial-boundary value problem of the hyperbolic for one-sided and two sided fractional order partial differential equations (FPDEs). The stability (and convergence) result of this problem is discussed by using the Fourier series method (Von Neumanns Method).

View Publication Preview PDF