Preferred Language
Articles
/
jih-2513
Approximaitly Quasi-primary Submodules
...Show More Authors

      In this paper, we introduce and study the notation of approximaitly quasi-primary submodules of a unitary left -module  over a commutative ring  with identity. This concept is a generalization of prime and primary submodules, where a proper submodule  of an -module  is called an approximaitly quasi-primary (for short App-qp) submodule of , if , for , , implies that either  or , for some . Many basic properties, examples and characterizations of this concept are introduced.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-inner product spaces of quasi-Sobolev spaces and their completeness
...Show More Authors

      Sequences spaces  , m  ,  p  have called quasi-Sobolev spaces were  introduced   by Jawad . K. Al-Delfi in 2013  [1]. In this  paper , we deal with notion of  quasi-inner product  space  by using concept of  quasi-normed  space which is generalized  to normed space and given a  relationship  between  pre-Hilbert space and a  quasi-inner product space with important  results   and   examples.  Completeness properties in quasi-inner   product space gives  us  concept of  quasi-Hilbert space .  We show  that ,  not  all  quasi-Sobolev spa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modules with Chain Conditions on S-Closed Submodules
...Show More Authors

  Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called  s- closed submodule denoted by  D ≤sc W, if D has   no  proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In  this  paper,  we study  modules which satisfies  the ascending chain  conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.

View Publication Preview PDF
Crossref
Publication Date
Mon May 28 2018
Journal Name
Iraqi Journal Of Science
On Essential (Complement) Submodules with Respect to an Arbitrary Submodule
...Show More Authors

 

View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
Injectivity and chain conditions on y-closed submodules
...Show More Authors

Let R be a commutative ring with identity and let M be a unital left Rmodule.
Goodearl introduced the following concept :A submodule A of an R –
module M is an y – closed submodule of M if is nonsingular.In this paper we
introduced an y – closed injective modules andchain condition on y – closed
submodules.

View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
Principally Quasi-Injective Semimodules
...Show More Authors

In this work, the notion of principally quasi- injective semimodule is introduced, discussing the conditions needed to get properties and characterizations similar or related to the case in modules.

      Let  be an -semimodule with endomorphism semiring Ș. The semimodule  is called principally quasi-injective, if every  -homomorphism from any cyclic subsemimodule of  to  can be extended to an endomorphism of .

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
On Primary Multipliction Modules
...Show More Authors

Let R be a commutative ring with identity and M be a unitary R- module. We shall say that M is a primary multiplication module if every primary submodule of M is a multiplication submodule of M. Some of the properties of this concept will be investigated. The main results of this paper are, for modules M and N, we have M N and HomR (M, N) are primary multiplications R-modules under certain assumptions.

View Publication Preview PDF
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Quasi-Small Prime Modules
...Show More Authors
Abstract<p>Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Relative Quasi-Injective Modules
...Show More Authors

    Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,) there exists a submodule X of  such that  f (N)  X ≈ M, where  is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in  embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N.         Moreover, we generalize some properties of weakly N-injectiv

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
T-Small Quasi-Dedekind modules
...Show More Authors
Abstract<p>Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if, <inline-formula> <tex-math><?CDATA $\forall \,w\,\in En{d}_{R}(Q),\,w\ne 0$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mo>∀</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mspace width="0.25em"></mspace> <mo></mo></mrow></math></inline-formula></p> ... Show More
View Publication
Scopus Crossref
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-Fully Cancellation Fuzzy Modules
...Show More Authors

  In this paper it was presented the idea quasi-fully cancellation fuzzy modules and we will denote it by  Q-FCF(M), condition universalistic idea quasi-fully cancellation modules It .has been circulated to this idea quasi-max fully cancellation fuzzy modules and we will denote it by Q-MFCF(M). Lot of results and properties have been studied in this research.

View Publication Preview PDF
Crossref (1)
Crossref