In this work, the notion is defined by using and some properties of this set are studied also, and Ù€ set are two concepts that are defined by using ; many examples have been cited to indicate that the reverse of the propositions and remarks is not achieved. In addition, new application example of nano was studied.
In this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
By use the notions pre-g-closedness and pre-g-openness we have generalized a class of separation axioms in topological spaces. In particular, we presented in this paper new types of regulαrities, which we named ρgregulαrity and Sρgregulαrity. Many results and properties of both types have been investigated and have illustrated by examples.
The significance fore supra topological spaces as a subject of study cannot be overstated, as they represent a broader framework than traditional topological spaces. Numerous scholars have proposed extension to supra open sets, including supra semi open sets, supra per open and others. In this research, a notion for ⱨ-supra open created within the generalizations of the supra topology of sets. Our investigation involves harnessing this style of sets to introduce modern notions in these spaces, specifically supra ⱨ - interior, supra ⱨ - closure, supra ⱨ - limit points, supra ⱨ - boundary points and supra ⱨ - exterior of sets. It has been examining the relationship with supra open. The research was also enriched with many
... Show MoreIn this paper we introduce new class of open sets called weak N-open sets and we study the relation between N-open sets , weak N-open sets and some other open sets. We prove several results about them.
Let M be a n-dimensional manifold. A C1- map f : M M is called transversal if for all m N the graph of fm intersect transversally the diagonal of MM at each point (x,x) such that x is fixed point of fm. We study the minimal set of periods of f(M per (f)), where M has the same homology of the complex projective space and the real projective space. For maps of degree one we study the more general case of (M per (f)) for the class of continuous self-maps, where M has the same homology of the n-dimensional sphere.
Relation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.
Abstract. Nano-continuous mappings have a wide range of applications in pure and applied sciences. This paper aims to study and investigate new types of mappings, namely nano-para-compact, completely nano-regular, nano-para-perfect, and countably nano-para-perfect mappings in nano-topological spaces using nano-open sets. We introduce several properties and basic characterizations related to these mappings, which are essential for proving our main results. Additionally, we discuss the relationships among these types of mappings in nano-topological spaces. We also introduce the concept of nano-Ti-mapping, where i = 0, 1, 2, nano-neighborhood separated, and nano-functionally separated, along with various other definitions. We explore the relat
... Show MoreThe topic of the research tagged (narrative structure and its impact on building open and closed endings in the fictional film) is summarized by studying the mechanism of employing closed and open endings in the fictional film. novelist, then the need for it, as well as the objectives of the research and clarifying its limits as well as its importance. Then moving to the theoretical framework, which included three topics, where the first topic was entitled (the cinematic construction of the film narrative), either the second topic (the structure of complexity and narrative solutions), or the third topic dealt with the subject (the structure of the end and its relationship to the construction of the narrative). After completing the theore
... Show MoreIn this paper, we introduce a new class of sets, namely , s*g-ï¡-open sets and we show that the family of all s*g-ï¡-open subsets of a topological space ) ,X( ï´ from a topology on X which is finer than ï´ . Also , we study the characterizations and basic properties of s*g-ï¡open sets and s*g-ï¡-closed sets . Moreover, we use these sets to define and study a new class of functions, namely , s*g- ï¡ -continuous functions and s*g- ï¡ -irresolute functions in topological spaces . Some properties of these functions have been studied .