In this work, the influence of the annealing temperature on the optical properties of the thin films Cadmium Sulphide (CdS) has been studied. Thin films of Cadmium Sulphide (CdS) were made using the Physical Vapor Deposition (PVD) method. The optical properties of annealing temperatures (as deposited, 200, 250, and 300 ) were scrupulous. The UV/VIS spectrophotometer investigated optical parameters such as transmission, the coefficient of absorption and energy gap of the films for the range (400-110 nm) as an assignment of the annealing temperature. The optical properties were calculated as a function of annealed temperature: absorption, transmission, reflection, band gap, coefficient of absorption, excitation coefficient and index of refraction.
Crop yield prediction is a critical measurement, especially in the time when parts of the world are suffering from farming issues. Yield forecasting gives an alert regarding economic trading, food production monitoring, and global food security. This research was conducted to investigate whether active optical sensors could be utilized for potato (Solanum tuberosum L.) yield prediction at the mid.le of the growing season. Three potato cultivars (Russet Burbank, Superior, and Shepody) were planted and six rates of N (0, 56, 112, 168, 224, and 280 kg ha−1), ammonium sulfate, which was replaced by ammonium nitrate in the 2nd year, were applied on 11 sites in a randomized complete block design, with four replications. Normalized difference ve
... Show MoreOptical Mark Recognition (OMR) is an important technology for applications that require speedy, high-accuracy processing of a huge volume of hand-filled forms. The aim of this technology is to reduce manual work, human effort, high accuracy in assessment, and minimize time for evaluation answer sheets. This paper proposed OMR by using Modify Bidirectional Associative Memory (MBAM), MBAM has two phases (learning and analysis phases), it will learn on the answer sheets that contain the correct answers by giving its own code that represents the number of correct answers, then detection marks from answer sheets by using analysis phase. This proposal will be able to detect no selection or select more than one choice, in addition, using M
... Show More The Dopping effect by methyl orange ( )on optical constants [Refractive index (n), extinction coefficient(K0),real and imaginary parts of dielectric constant(εr &εi)] of poly methyl methacrylat (PMMA) that additive to this polymer with both percentages 2% and 4% at thickness(145)µm have been studied. This study has been done by recording the absorption and transmission spectra in the wavelength range (200-900)nm . The results showed that all optical parameters are increased by increasing dopping rate except the transmission was decreased.
This study aims to analyze spectra in real-time for λ Draconids, σ Hydrids, μ Virginid, and one sporadic meteor using spectroscopic chemical analysis and diagnose plasma parameters. Good-resolution spectroscopy and a CCD camera for meteor observation were used concurrently to examine the ablation spectra of these meteorites in situ. The Boltzmann and Lorentz methods were then used to determine the temperature and density of electrons, the length of Debye, and the frequency of plasma. Furthermore, spectra data can be analyzed and compared to data from other sources. Spectrum tests can be utilized to identify the chemical structure of meteorites' plasma.
The aim of the study is to detect the malignant conditions of the skin tumors through the features of optical images. This research included some of image processing techniques to detect skin cancer as a strong threat to human beings' lives. Using image processing and analysis methods to improves the ability of pathologists to detect this disease leading to more specified diagnosis and better treatment of them. One hundred images were collected from Benign and Malignant tumors and some appropriate image features were calculated, like Maximum Probability, Entropy, Coefficient of Variation, Homogeneity and Contrast, and using Minimum Distance method to separate these images. These features with Minimum Distance as a proposed making decision a
... Show MoreThe development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV) hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detec
... Show MoreA simulated ion/electron optical transport and focusing system has been put forward to
be mounted on high voltage transmission electron microscope for in situ investigations.
The suggested system consists of three axially symmetric electrostatic lenses namely an
einzel lens, an accelerating immersion lens, and a decelerating immersion lens, in addition
to an electrostatic quadrupole doublet lens placed on the image side. The electrodes
profile of these lenses is determined from the proposed axial field distributions. The
optical properties of the whole system have been computed together with the trajectory of
the accelerated charged-particles beam along the optical axis of the system. The computed
dimensions of th
Abstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fi
... Show More