The notions ÇÂsemiÂgÂclosedness and ÇÂsemiÂgÂopenness were used to generalize and introduced new classes of separation axioms in ideal spaces. Many relations among several sorts of these classes are summarized, also.
In the present study, the cluster concept was adopted to find points parallel to the cumulative points of any subset in topology cluster proximity spaces. The takeoff set term was given by the researcher to the set of all points. Also, an opposite definition was found for it, which is the follower set. The relation between them was found and their most important properties were highlighted. Through these two sets, new sets were built that are called, f_σ-set ,f_tσ-set ,t_fσ-set ,bushy set, scant set .
In this paper, we introduce the notation of the soft bornological group to solve the problem of boundedness for the soft group. We combine soft set theory with bornology space to produce a new structure which is called soft bornological group. So that both the product and inverse maps are soft bounded. As well as, we study the actions of the soft bornological group on the soft bornological sets. The aim soft bornological set is to partition into orbital classes by acting soft bornological group on the soft bornological set. In addition, we explain the centralizer, normalizer, and stabilizer in details. The main important results are to prove that the product of soft bornological groups is soft bornol
... Show Morewe applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra with investigation some theorems, and also, we study the notation of direct product of intuitionistic fuzzy topological d-algebra.
In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
The purpose of this paper is to introduce a new type of compact spaces, namely semi-p-compact spaces which are stronger than compact spaces; we give properties and characterizations of semi-p-compact spaces.
In this work we explain and discuss new notion of fibrewise topological spaces, calledfibrewise soft ideal topological spaces, Also, we show the notions of fibrewise closed soft ideal topological spaces, fibrewise open soft ideal topological spaces and fibrewise soft near ideal topological spaces.
The aim of this paper is to generate topological structure on the power set of vertices of digraphs using new definition which is Gm-closure operator on out-linked of digraphs. Properties of this topological structure are studied and several examples are given. Also we give some new generalizations of some definitions in digraphs to the some known definitions in topology which are Ropen subgraph, α-open subgraph, pre-open subgraph, and β-open subgraph. Furthermore, we define and study the accuracy of these new generalizations on subgraps and paths.
The purpose of this paper is to give the condition under which every weakly closed
function is closed and to give the condition under which the concepts of weaklysemi
closed function and weakly pre-closed function are equivalent. Moreover,
characterizations and properties of weakly semi closed functions and weakly preclosed
function was given.
In this paper we discuss the Zariski topology of intuitionistic fuzzy d-filter in d-algebra, with some topological properties on the spectrum of intuitionistic fuzzy d-filter in d-algebra X which have algebraic features such as connectedness. We find that this topology is a strongly connected, and T0 space. We also define the invariant map on intuitionistic fuzzy prime d-filter with a homomorphism map.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.