Preferred Language
Articles
/
jih-2378
Genetic Algorithm and Particle Swarm Optimization Techniques for Solving Multi-Objectives on Single Machine Scheduling Problem
...Show More Authors

In this paper, two of the local search algorithms are used (genetic algorithm and particle swarm optimization), in scheduling number of products (n jobs) on a single machine to minimize a multi-objective function which is denoted as  (total completion time, total tardiness, total earliness and the total late work). A branch and bound (BAB) method is used for comparing the results for (n) jobs starting from (5-18). The results show that the two algorithms have found the optimal and near optimal solutions in an appropriate times.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
The Galerkin-Implicit Method for Solving Nonlinear Variable Coefficients Hyperbolic Boundary Value Problem
...Show More Authors

This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP).  The given boundary value problem is written in its discrete weak form (WEFM) and proved  have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform  the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Three Weighted Residuals Methods for Solving the Nonlinear Thin Film Flow Problem
...Show More Authors
Abstract<p>In this paper, the methods of weighted residuals: Collocation Method (CM), Least Squares Method (LSM) and Galerkin Method (GM) are used to solve the thin film flow (TFF) equation. The weighted residual methods were implemented to get an approximate solution to the TFF equation. The accuracy of the obtained results is checked by calculating the maximum error remainder functions (MER). Moreover, the outcomes were examined in comparison with the 4<sup>th</sup>-order Runge-Kutta method (RK4) and good agreements have been achieved. All the evaluations have been successfully implemented by using the computer system Mathematica®10.</p>
View Publication
Crossref (1)
Crossref
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
On Solving Singular Multi Point Boundary Value Problems with Nonlocal Condition
...Show More Authors

In this paper Hermite interpolation method is used for solving linear and non-linear second order singular multi point boundary value problems with nonlocal condition. The approximate solution is found in the form of a rapidly convergent polynomial. We discuss behavior of the solution in the neighborhood of the singularity point which appears to perform satisfactorily for singular problems. The examples to demonstrate the applicability and efficiency of the method have been given.

View Publication Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Engineering And Technology Journal
Face Retrieval Using Image Moments and Genetic Algorithm
...Show More Authors

Publication Date
Wed Feb 16 2022
Journal Name
Journal Of Economics And Administrative Sciences
Solving Resource Allocation Model by Using Dynamic Optimization Technique for Al-Raji Group Companies for Soft Drinks and Juices
...Show More Authors

In this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Grey Wolf Optimization Algorithm: A Survey
...Show More Authors

     The Gray Wolf Optimizer (GWO) is a population-based meta-heuristic algorithm  that belongs to the family of swarm intelligence algorithms inspired by the social behavior of gray wolves, in particular the social hierarchy and hunting mechanism. Because of its simplicity, flexibility, and few parameters to be tuned, it has been applied to a wide range of optimization problems. And yet it has some disadvantages, such as poor exploration skills, stagnation at local optima, and slow convergence speed. Therefore, different variants of GWO have been proposed and developed to address these disadvantages. In this article, some literature, especially from the last five years, has been reviewed and summarized by well-known publishers. Fir

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jul 25 2019
Journal Name
Advances In Intelligent Systems And Computing
Solving Game Theory Problems Using Linear Programming and Genetic Algorithms
...Show More Authors

View Publication
Scopus (12)
Crossref (8)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
An overview of machine learning classification techniques
...Show More Authors

Machine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Detecting Textual Propaganda Using Machine Learning Techniques
...Show More Authors

Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation.  Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Iraqi Journal Of Science
Review on Hybrid Swarm Algorithms for Feature Selection
...Show More Authors

    Feature selection represents one of the critical processes in machine learning (ML). The fundamental aim of the problem of feature selection is to maintain performance accuracy while reducing the dimension of feature selection. Different approaches were created for classifying the datasets. In a range of optimization problems, swarming techniques produced better outcomes. At the same time, hybrid algorithms have gotten a lot of attention recently when it comes to solving optimization problems. As a result, this study provides a thorough assessment of the literature on feature selection problems using hybrid swarm algorithms that have been developed over time (2018-2021). Lastly, when compared with current feature selection procedu

... Show More
View Publication Preview PDF
Scopus Crossref