Preferred Language
Articles
/
jih-2282
Determination of Ibuprofen in Pharmaceutical Formulations Using Differential Pulse Polarography
...Show More Authors

     A reliable differential pulse polarographic (DPP) method has been developed and applied for the determination of ibuprofen IBU in dosage form with dropping mercury electrode (DME) versus Ag/AgCl. The best peak was found at cathodic peak of -1.18 V in phosphate buffer at pH=4 and 0.025M of KNO3 as supporting electrolyte. In order to obtaine the highest sensitivity, instrumental and experimental parameters were examined including the type and concentration of supporting electrolyte, pH of buffer solution, pulse amplitude and voltage step time. Diffusion current showed a direct linear relationship to ibuprofen concentration in the range of (5 – 30) μg. mL-1 (2.43× 10-5 – 1.45 × 10-4 mol·L–1) with correlation coefficient r= 0.9999, detection limit (S/N = 3) =3.40 μg. mL-1 (1.65 × 10-5 mol·L–1) and the value of precision in terms of relative standard deviation  RSD%, ranged between 0.374-0.5176 %. The established DPP method offers an excellent analytical figure of merits as well as its successful applicability to examine two commercial drug forms (tablet and suspension) for the determination of ibuprofen.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Numerical Solution of Linear Fractional Differential Equation with Delay Through Finite Difference Method
...Show More Authors

This article addresses a new numerical method to find a numerical solution of the linear delay differential equation of fractional order , the fractional derivatives described in the Caputo sense. The new approach is to approximating second and third derivatives. A backward finite difference method is used. Besides, the composite Trapezoidal rule is used in the Caputo definition to match the integral term. The accuracy and convergence of the prescribed technique are explained. The results  are shown through numerical examples.

 

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Stability for the Systems of Ordinary Differential Equations with Caputo Fractional Order Derivatives
...Show More Authors

     Fractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and  engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function  is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.

View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Fri May 01 2020
Journal Name
Iraqi Geological Journal
DETERMINATION OF PORE TYPES AND POROSITY TRENDS USING OF VELOCITY-DEVIATION LOG FOR THE CARBONATE MISHRIF RESERVOIR IN HALFAYA OIL FIELD, SOUTHEAST IRAQ
...Show More Authors

View Publication
Scopus (14)
Crossref (2)
Scopus Crossref
Publication Date
Wed Dec 13 2023
Journal Name
Drug And Chemical Toxicology
Single and repeat-dose toxicity and local tolerance assessment of newly developed oil emulsion adjuvant formulations for veterinary purposes
...Show More Authors

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

       In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE Transformation
...Show More Authors

The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations

View Publication Preview PDF
Crossref
Publication Date
Wed May 03 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Designing Feed Forward Neural Network for Solving Linear VolterraIntegro-Differential Equations
...Show More Authors

The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find the approximate solution of the second order linear Volterraintegro-differential equations with boundary conditions. The designer utilized to reduce the computation of solution, computationally attractive, and the applications are demonstrated through illustrative examples.

View Publication Preview PDF
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Effect of annealing temperature and laser pulse energy on the optical properties of CuO films prepared by pulsed laser deposition
...Show More Authors

In this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of   as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy  and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Asymptotic Stability for Some Types of Nonlinear Fractional Order Differential-Algebraic Control Systems
...Show More Authors

The aim of this paper is to study the asymptotically stable solution of nonlinear single and multi fractional differential-algebraic control systems, involving feedback control inputs, by an effective approach that depends on necessary and sufficient conditions.

View Publication Preview PDF
Scopus Crossref