The thermal properties of four nematogenic Schiff’s bases, n-butyl-to-n-heptyl of bis (4-n-alkyloxybenzylidine)-2,3,5.6- tetramethyl-1, 4-phenylenediamine, have been studied. The transition temperatures and enthalpies of transition were examined by differential scanning calorimeter (DSC). Several correlations were carried out; those included the relations between transition temperatures, enthalpies and entropies of transition with increasing the
number of carbon atoms in the terminal alkyl chains. In addition, new regular relations were found between the ratio of the enthalpies and of the entropies, for noematic-isotropic transition and crystal-isotropic transition ( ΔΗÎ-i/AHC-I, ΔSN-1/ ASC-I ), with increasing terminal alkyl chain lengths. Many interesting conclusions, concerning the relation
between the anisotropic molecular shape and the thermal properties of the above nematogens, have been arrived at.
This work includes two steps of synthesis, the first one is the synthesis of indole which was prepared according to literature of the reaction of phenyl hydrazine with acetaldehyde in glacial acetic acid afforded phenyl hydrazone of acetaldehyde , this product was fused with zinc chloride to give the indole.Reaction of cyclohexanone with phenyl hydrazine using the same procedure for the preparing giving 1,2,3,4-Tetrahydrocarbazole.Second step involved synthesis of a series of (17) of mannich bases derivatives of indole and 1,2,3,4-Tetrahydrocarbazle. Mannich reaction involves the condensation of aldehyde usually formaldehyde with different secondary amine and with compound containing an activated hydrogen.The reaction illustrated by the fo
... Show MoreIn the present study a series of some four-,five-and seven-membered heterocyclic compounds have been synthesized by the reaetion of Schiff bases (1a,b) with chloroacetyl chloride, sodium azide, thioglycolic acid or various anhydrides to give azetidinone (2a,b), tetrazole (3a,b), thiazolidinone (4a,b) and 1,3-oxazepine derivatives (5-8a,b) respectively. Schiff bases (1a,b)were prepared from the reaction of p-toluidine with aromatic aldehydes. All synthesized compounds were characterized by physical properties and spectral data.
In this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show MorePure SnSe thin film and doped with S at different percentage (0,3,5,7)% were deposited from alloy by thermal evaporation technique on glass substrate at room temperature with 400±20nm thickness .The influences of S dopant ratio on characterization of SnSe thin film Nano crystalline was investigated by using Atomic force microscopy(AFM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Hall Effect measurement, UV-Vis absorption spectroscopy to study morphological, structural, electrical and optical properties respectively .The XRD showed that all the films have polycrystalline in nature with orthorhombic structure, with preferred orientation along (111)plane .These films was manufactured of very fine crystalline size in the ra
... Show MoreIn this study, epoxy was used as a matrix for composite materials, with E-glass fiber, jute and PVC fiber which was woven roving fiber, as reinforcement with volume fraction (Vf= 30%). There are two of prepared types of epoxy non reinforced, epoxy reinforced with E-glass, jute and PVC fibers including study of mechanical tests (Impact test, Bending test) different temperature and thermal conductivity and calculating the temperatures coefficient at different temperature. Results show that elastic modulus at rate values decrease to the increase of temperature and the impact strength, impact energy and thermal conductivity increase with increase temperature.
Our aim of this research is to find the results of numerical solution of Volterra linear integral equation of the second kind using numerical methods such that Trapezoidal and Simpson's rule. That is to derive some statistical properties expected value, the variance and the correlation coefficient between the numerical and exact solutionâ–¡
PVA:PEG/MnCl2 composites have been prepared by adding (MnCl2) to the mixture of the poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) with different weight percentages (0, 2, 4, 6, 8 and 10) wt.% by using casting method. The type of charge carriers, concentration (nH) and Hall mobility (μH) have been estimated from Hall measurements and show that the films of all concentration have a negative Hall coefficient. In D.C measurement increase temperature leads to decrease the electrical resistance. The D.C conductivity of the composites increases with the increasing of the concentration of additive particles and temperature. The activation energy decreases for all composites with increasing the concentration of the additive particles.
... Show More