Let R be a ring and let A be a unitary left R-module. A proper submodule H of an R-module A is called 2-absorbing , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H or rs∈[H:A], and a proper submodule H of an R-module A is called quasi-prime , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H. This led us to introduce the concept pseudo quasi-2-absorbing submodule, as a generalization of both concepts above, where a proper submodule H of an R-module A is called a pseudo quasi-2-absorbing submodule of A, if whenever rsta∈H,where r,s,t∈R,a∈A, implies that either rsa∈H+soc(A) or sta∈H+soc(A) or rta∈H+soc(A), where soc(A) is socal of an R-module A. Several basic properties, examples and characterizations of this concept are given. Moreover, we investigate relationships between pseudo quasi-2-absorbing submodule and other classes of submodules.
Schiff bases (SBs) represent multipurpose ligands that can be prepared from the concentration of prime amines with carbonyl clusters. Creation of SB transition metal compounds via as ligands has opportunity of attaining coordination complexes of abnormal arrangement and stability. These transition metal compounds have extraordinary attention as a consequence of their dynamic portion in metalloenzymes and as biomimetic prototypical complexes as a result of their proximity to usual enzymes and proteins. These complexes are imperative in medicinal disciplines owing to their widespread range of biological actions. They mostly exhibit organic actions involving antifungal, antibacterial, antitumor, antidiabetic, herbicidal, antiproliferative, ant
... Show MoreThe research is an article that teaches some classes of fully stable Banach - Å modules. By using Unital algebra studies the properties and characterizations of all classes of fully stable Banach - Å modules. All the results are existing, and they've been listed to complete the requested information.
A new spectrophotometric flow injection method has been establish for the determintaions of some catecholaminedrugs
The aim of our work is to develop a new type of games which are related to (D, WD, LD) compactness of topological groups. We used an infinite game that corresponds to our work. Also, we used an alternating game in which the response of the second player depends on the choice of the first one. Many results of winning and losing strategies have been studied, consistent with the nature of the topological groups. As well as, we presented some topological groups, which fail to have winning strategies and we give some illustrated examples. Finally, the effect of functions on the aforementioned compactness strategies was studied.
Biological Activity of Complexes of Some Amino Acid
Bacterial toxins are considered to be virulence factors due to the fact that they interfere with the normal processes of the host cell in which they are found. The interplay between the infectious processes of bacteria and the immune system is what causes this impact. In this discussion, we are going to focus on bacterial toxins that act in the extracellular environment, especially on those that impair the activity of macrophages and neutrophils. These toxins are of particular interest since they may be found in a wide variety of bacteria. We will be concentrating our efforts, in particular, on the toxins that are generated by Gram-positive and Gram-negative bacteria. These toxins are able to interact with and have an effect on the many dif
... Show MoreThe objective of this paper is, firstly, we study a new concept noted by algebra and discuss the properties of this concept. Secondly, we introduce a new concept related to the algebra such as smallest algebra. Thirdly, we introduce the notion of the restriction of algebra on a nonempty subset of and investigate some of its basic properties. Furthermore, we present the relationships between field, monotone class, field and algebra. Finally, we introduce the concept of measure relative to the algebra and prove that every measure relative to the is complete.
The primary purpose of this subject is to define new games in ideal spaces via set. The relationships between games that provided and the winning and losing strategy for any player were elucidated.