Let R be a commutative ring with identity and let M be a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of semi-essential submodules which introduced by Ali S. Mijbass and Nada K. Abdullah, and we make simple changes to the definition relate with the zero submodule, so we say that a submodule N of an R-module M is called semi-essential, if whenever N ∩ P = (0), then P = (0) for each prime submodule P of M. Various properties of semi-essential submodules are considered.
In this work we shall introduce the concept of weakly quasi-prime modules and give some properties of this type of modules.
A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
The subject of the provisions of prayer on the chairs of the important topics in the jurisprudence they fall under the door of the people of excuses, and this section of the important doors in Islamic jurisprudence because it permeates scourge, as prayer is one of the pillars of this religion, and the first thing to be held accountable on the Day of Resurrection prayer If the peace reconciled the rest of his work and spoil corrupted all his work, the street wise was interested in this matter and put him provisions overlooked by many people these days became insulted him and do not pardon him, and do not know the rules and provisions approved by Shara, and the omission of one of these provisions is possible To lead to the invalidity of hi
... Show MoreThe main purpose of this work is to introduce the concept of higher N-derivation and study this concept into 2-torsion free prime ring we proved that:Let R be a prime ring of char. 2, U be a Jordan ideal of R and be a higher N-derivation of R, then , for all u U , r R , n N .
Ring theory is one of the influential branches of abstract algebra. In this field, many algebraic problems have been considered by mathematical researchers who are working in this field. However, some new concepts have been created and developed to present some algebraic structures with their properties. Rings with derivations have been studied fifty years ago, especially the relationships between the derivations and the structure of a ring. By using the notatin of derivation, many results have been obtained in the literature with different types of derivations. In this paper, the concept of the derivation theory of a ring has been considered. This study presented the definition of
Ring theory is one of the influ
... Show MoreThe effect of approaching nozzle jet from the deposition surface
on structural, optical and morphology properties of copper oxide thin
films was studied. The film was prepared by homemade fully
computerized CNC spray pyrolysis deposition technique at
preparations speed (3, 4, 5, and 6 mm/sec). The repeated line mode
was used at deposition temperature equal 450 °C whereas the
spraying time was in the range of (15-30 min) according to the
deposition speed. The film exhibit polycrystalline structure with
preferred orientation along (-111), (022) and (011), (002) at a 2θ
value of (35.63o) and (38.8o) respectively. Optical band gaps were
recorded at these speed shows variance in value from (1.53-2.08 eV).
Fi
Jordan curve theorem is one of the classical theorems of mathematics, it states the following : If is a graph of a simple closed curve in the complex plane the complement of is the union of two regions, being the common boundary of the two regions. One of the region is bounded and the other is unbounded. We introduced in this paper one of Jordan's theorem generalizations. A new type of space is discussed with some properties and new examples. This new space called Contractible -space.
The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.
The aim of this paper is to examine cases of deletion not dependent on linguistic context. Perlmutter (1971) claims that any sentence other than an imperative1 in which there is an S that does not contain a subject in the surface structure is ungrammatical. Dillon (1978) counts elliptical sentences such as ^ Beg your pardon2 as grammatically incomplete (and hence as strictly ungrammatical). Such statements are, however, not without problems for reasons that will be given below.