Making the data secure is more and more concerned in the communication era. This research is an attempt to make a more secured information message by using both encryption and steganography. The encryption phase is done with dynamic DNA complementary rules while DNA addition rules are done with secret key where both are based on the canny edge detection point of the cover image. The hiding phase is done after dividing the cover image into 8 blocks, the blocks that are used for hiding selected in reverse order exception the edge points. The experiments result shows that the method is reliable with high value in PSNR
Let G be a graph with p vertices and q edges and be an injective function, where k is a positive integer. If the induced edge labeling defined by for each is a bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes(G) is the minimum k for which G admits an odd Fibonacci edge irregular labeling. In this paper, the odd Fibonacci edge irregularity strength for some subdivision graphs and graphs obtained from vertex identification is determined.
Determining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreAbstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreBackground: The long term survival of dental implants is evaluated by the amount of crestal bone loss around the implants. Some initial loss of bone around dental implants is generally expected. There is reason to believe that reflecting a mucoperiosteal flap promotes crestal bone loss in the initial phase after an implant has been inserted. The surgical placement of a dental implant fixture is constantly changing and in recent years, there has been some interest in developing techniques that minimize the invasive nature of the procedure, with flapless implant surgery being advocated. The purpose of this study was to compare the radiographic level of the peri- implant bone after implant placement between traditional flapped surgery and f
... Show MoreIn this research a proposed technique is used to enhance the frame difference technique performance for extracting moving objects in video file. One of the most effective factors in performance dropping is noise existence, which may cause incorrect moving objects identification. Therefore it was necessary to find a way to diminish this noise effect. Traditional Average and Median spatial filters can be used to handle such situations. But here in this work the focus is on utilizing spectral domain through using Fourier and Wavelet transformations in order to decrease this noise effect. Experiments and statistical features (Entropy, Standard deviation) proved that these transformations can stand to overcome such problems in an elegant way.
... Show MoreThis study seeks to identify the possibility of achieving the property of faithful representation of accounting information and measure it by using the standard approach based on mathematical and statistical equations by comparing two financial periods before and after the application of (IFRS-15) Revenue from contracts with customers, during the period. (2014-2018), for the financial statements of the mixed joint stock companies listed on the Iraq Stock Exchange, which is one of the main pillars of the economic structure of the country, as a joint investment between the state and the private sector, and has importance in many aspects, including support for projects of public companies, S Absorption and employment of labor, as well as ra
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show More