Preferred Language
Articles
/
jih-1848
Investigation of the Structural, Optical and Electrical Properties of AgInSe2 Thin Films
...Show More Authors

  The Silver1Indium1Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness  have been1prepared2from the compound alloys2using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1.

The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K.

The amount3or (concentration) of the elements3(Ag, In, Se) in the  prepared alloy3was verified using  an energy dispersive3x-ray spectrometer (EDS)3technology. X-ray diffraction3analysis shows that AIS alloy  prepared as (powder) and the thin films3are polycrystalline  of tetragonal3structure with preferential orientation3(112). The crystalline3size increases  as a function3of annealing temperature. The atomic force3microscope (AFM) technique  was used to examine3the  topography  and  estimate3the surface roughness, also the  average grain3size of the films. The results show3that the grain size increases3with annealing3temperature.

  The optical4band gap of the films lies4in the range 1.6-1.9 eV. The films4appear to be4n-type indicating that the electrons4as a dominant charge4carrier. The electrical conductivity4increases  with a corresponding4increase in annealing4temperature.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Sep 25 2018
Journal Name
Iraqi Journal Of Science
Influence the number of laser pulses and annealed temperature and the Structure and optical properties of In2O3: CdO films prepared laser induce plasma
...Show More Authors

In this Research, (In2O3: CdO) films were prepared using pulsed laser deposition (PLD) method on glass substrate at room temperature deposited at laser influence 500mJ/cm2with different shoots N= (200,300,400,500and600). the structural, and the optical properties and the films are studied with different annealing temperatures (523and 623) K. Optical measurements and the films were analyzed by UV-VIS absorption spectra. The structural properties of samples were investigated by x-ray diffraction patterns of the films and show that the films and polycrystalline Structure with all shoots. Transmittance spectrum found is equal to 93.17%, refractive index range is 1.635 and energy gap range is 2.75-3.15ev.

View Publication Preview PDF
Publication Date
Wed May 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Studying Some Electrical Properties for ZnSe Films Prepared by Using the Thermal Evaporation Method in vacuum
...Show More Authors

  Thin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency

View Publication Preview PDF
Publication Date
Tue May 15 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Study of the Influence of Annealing Temperature on the Structural and Optical Properties of ZnTe Prepared by Vacuum Thermal Evaporation Technique
...Show More Authors

   The ZnTe alloy was prepared as  deposited thin films on the glass substrates at a thickness of 400±20 nm using vacuum evaporation technique at pressure (1 × 10-5) mbar and room temperature. Then the thin films under vacuum (2 × 10-3 mbar) were annealing at (RT,100 and 300) °C for one hour. The structural properties were studied by using X-ray diffraction and AFM, the results show that the thin films had approached the single crystalline in the direction (111) as preferred orientation of the structure zinc-blende for cubic type, with small peaks of tellurium (Te) element for all prepared thin films. The calculated crystallite size (Cs) decreased with the increase in the anne

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Annealing Effect on the Optical Properties of (ZnO)x (CdO)1-x Films Obtained by Spray Pyrolysis
...Show More Authors

The effect of the annealing on the optical transmission , absorp tion coefficient,
dielectric constants (ε
r
),( ε
i
) ,Skin depth and the optical ener gy gap of (ZnO)x(CdO)1-x thin
films with (x=0.05) deposited on preheated glass substrates at a temperature of (450 C°) by
chemical pyrolysis technique were performed . These f ilms show direct allowed inter band
transition that influenced by annealing at ( 450 C°) for two hours . And it also found that the
optical ener gy gap has been increased fro m about (2.50 eV) before annealing to about (2.65
eV) after annealing , fro m the analysis of the absorp tion and transmission sp ectra in the
wavelength range (380-900nm) . The results show t

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Ovonic Research
Effect of copper on physical properties of CdO thin films and n-CdO: Cu / p-Si heterojunction
...Show More Authors

Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Ovonic Research
Effect of copper on physical properties of CdO thin films and n-CdO: Cu / p-Si heterojunction
...Show More Authors

Scopus (14)
Scopus
Publication Date
Sat Jan 04 2014
Journal Name
International Journal Of Current Engineering And Technology
The Mechanisms of AC-conductivity for Ge0.4Te0.6 Thin Films
...Show More Authors

The Ge0.4Te0.6 alloy has been prepared. Thin films of Ge0.4Te0.6 has been prepared via a thermal evaporation method with 4000A thickness, and rate of deposition (4.2) A/sec at pressure 2x10-6 Torr. The A.C electrical conductivity of a-Ge0.4Te0.6 thin films has been studied as a function of frequency for annealing temperature within the range (423-623) K, the deduced exponent s values, was found to decrease with increasing of annealing temperature through the frequency of the range (102-106) Hz. It was found that, the correlated barrier hopping (CBH) is the dominant conduction mechanism. Values of dielectric constant ε1 and dielectric loss ε2 were found to decrease with frequency and increase with temperature. The activation energies have

... Show More
Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Energy Procedia
Evaluation of the optical properties for thick films of epoxy-diamond paste blend prepared by the casting method
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees19gr
The influence of partial substation of antimony & lanthanum oxides on electrical and structural properties for the superconductor compound Bi2-xSbxBa2Ca2-yLayCu3O10+δ
...Show More Authors

View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Oct 20 2021
Journal Name
Iraqi Journal Of Industrial Research
Annealing Effect on the SnSe Nanocrystalline Thin Films and the Photovoltaic Properties of the p-SnSe/n-Si Heterojunction Solar Cells
...Show More Authors

A thin film of SnSe were deposited by thermal evaporation technique on 400 ±20 nm thick glass substrates of these films were annealed at different temperatures (100,150,200 ⁰C), The effect of annealing on the characteristics of the nano crystalline SnSe thin films was investigated using XRD, UV-VIS absorption spectroscopy, Atomic Force Microscope (AFM), and Hall effect measurements. The results of X-ray displayed that all the thin films have polycrystalline and orthorhombic structure in nature, while UV-VIS study showed that the SnSe has direct band gap of nano crystalline and it is changed from 60.12 to 94.70 nm with increasing annealing temperature. Hall effect measurements showed that all the films have a positive Hall coeffic

... Show More
View Publication
Crossref